RÉUNION DE CONSENSUS INAMI - 21 NOVEMBRE 2013

PRÉVENTION ET TRAITEMENT DES THROMBOEMBOLIES VEINEUSES

RÉSUMÉ DE L’ANALYSE DE LA LITTÉRATURE
PRÉVENTION ET TRAITEMENT
DE THROMBOEMBOLIES VEINEUSES

Revue systématique de la littérature scientifique:
document de synthèse

Réunion de consensus
21 novembre 2013
Auditorium Lippens (Bibliothèque Royale)
Brussels
Cette analyse de la littérature a été effectuée par vzw Farmaka asbl et a été suivie par un comité de lecture.

Chercheurs

Hera Decat MD, vzw Farmaka asbl
Griet Goesaert MD, vzw Farmaka asbl
Hilde Habraken Lic, vzw Farmaka asbl
Thérèse Leroy Lic, vzw Farmaka asbl
Karijn Vanden Maagdenberg, Dr. Ir., vzw Farmaka asbl
Gerben Vandermeiren MD, vzw Farmaka asbl
Sofie Wouters Lic, vzw Farmaka asbl

Comité de lecture

Henrard Gilles, MD, ULg, Liège
Haentjens Patrick, MD, PhD, VUB, Brussel
Van Meerhaeghe Alain, MD, CHU, Charleroi
Verhoeven Veronique, MD, PhD, UA, Antwerpen

Secrétariat et informatique

Stijn Dumon, vzw Farmaka asbl

Traduction

Miles NV
Sophie Vanderdonck vzw Farmaka asbl
TABLE DES MATIÈRES

ABRÉVIATIONS ... 7

1 MÉTHODOLOGIE .. 9
 1.1 INTRODUCTION ET FORMULATION DE LA QUESTION ... 9
 1.1.1 Questions du jury ... 9
 1.2 Mission du groupe de recherche bibliographique ... 11
 1.2.1 Populations .. 12
 1.2.2 Interventions ... 13
 1.2.3 Comparaisons ... 13
 1.2.4 Critères de jugement .. 14
 1.2.5 Critères d’études : .. 15
 1.2.6 Guides de Pratique Clinique (GPC) .. 15
 1.3 STRATEGIE DE RECHERCHE .. 16
 1.3.1 Principes de recherche systématique ... 16
 1.3.2 Détails concernant la stratégie de recherche .. 17
 1.4 PROCÉDURE DE SÉLECTION ... 18
 1.5 ÉVALUATION DE LA QUALITÉ DES PREUVES DISPONIBLES .. 19
 1.6 RÉSUMÉ DES RÉSULTATS D’ÉTUDE ... 23
 1.7 L’INTERPRETATION DES CRITÈRES DE JUGEMENT DANS LES TABLEAUX D’ÉVIDENCE 24

2 REFLEXIONS CRITIQUES DU COMITE DE LECTURE ET DU GROUPE DE REVUE DE LA LITTERATURE ... 26

3 GUIDES DE PRATIQUE .. 29
 3.1 CRITÈRES POUR LA SÉLECTION DES GUIDES DE PRATIQUE .. 29
 3.2 GUIDES DE PRATIQUE SéLECTIONNÉS ... 29
 3.3 RÉSUMÉ DES GUIDES DE PRATIQUE .. 31
 3.4 DISCUSSION ET CONCLUSIONS FONDÉES SUR LES RECOMMANDATIONS 31
 3.4.1 Facteurs de risque pour la TVP et l’EP ... 31
 3.4.2 Diagnostic de la TVP et de l’EP ... 35
 3.4.2.1 Scores de risque .. 35
 3.4.3 Traitement de la TVP et de l’EP ... 48
 3.4.4 Prévention de la TEV en post-opératoire ou en cas d’immobilisation 50
 3.4.4.1 Chirurgie orthopédique majeure ... 50
 3.4.4.2 Autres chirurgies majeures (non orthopédique, non oncologique) 51
 3.4.4.3 Arthroscopie du genou .. 52
 3.4.4.4 Immobilisation avec plâtre ... 52
 3.4.4.5 Patient médical ... 52
 3.4.4.6 Voyages de longue distance .. 53
 3.4.4.7 Prévention de la TEV dans le cancer .. 53

4 RÉSUMÉ DES RÉSULTATS : TRAITEMENT DES THROMBOEMBOLIES VEINEUSES 55
 4.1 TRAITEMENT INITIAL DE LA THROMBOEMBOLIE VEINEUSE ... 57
 4.1.1 Anticoagulation versus placebo dans le traitement initial .. 57
 4.1.2 Anticoagulation versus anticoagulation dans le traitement initial 57
 4.1.3 Durée du traitement initial .. 57
 4.2 TRAITEMENT INITIAL ET POURSUITE DU TRAITEMENT AFIN DE PREVENIR LES RECIDIVES DE THROMBOEMBOLIES ... 58
 4.2.1 Nouveaux anticoagulants versus traitement standard ... 58
 4.2.1.1 Rivaroxaban versus énoxaparine suivie d’un antagoniste de la vitamine K chez les patients ayant une TEV .. 58
 4.2.1.2 Apixabban versus énoxaparine suivie d’un antagoniste de la vitamine K dans la TEV symptomatique .. 60

 1
4.2.2 Traitement pharmacologique (+ bas de compression) versus absence de traitement (+ bas de compression) .. 62
 4.2.2.1 Nadropramine+ bas de compression graduée versus bas de compression graduée dans la thrombose des veines musculaires du mollet ... 62
4.3 PHASE DE POURSUITE DU TRAITEMENT AFIN DE PREVENIR LES RECIDES DE THROMBOEMBOLIES VEINEUSES 63
 4.3.1 Héparine de bas poids moléculaire versus antagoniste de la vitamine K .. 63
 4.3.2 Héparine de bas poids moléculaire versus antagoniste de la vitamine K chez les patients cancéreux 65
 4.3.3 Dabigatran versus antagoniste de la vitamine K après 10 jours de traitement initial 66
 4.3.4 Dabigatran versus antagoniste de la vitamine K après 10 jours de traitement initial chez les patients cancéreux .. 68
 4.3.5 Dabigatran versus antagoniste de la vitamine K après au moins 3 mois de traitement anticoagulant prolongé ... 69
4.4 DURÉE DE LA PHASE DE POURSUITE DU TRAITEMENT ... 71
 4.4.1 6 mois de traitement prolongé versus 3 mois de traitement prolongé .. 71
 4.4.2 Traitement prolongé à long terme versus traitement prolongé à court terme 72
 4.4.3 Dabigatran versus placebo au moins 6 mois de traitement anticoagulant ... 74
 4.4.4 Apixaban versus placebo après au moins 6 mois de traitement anticoagulant 76
 4.4.5 Rivaroxaban versus placebo après au moins 6 mois de traitement anticoagulant 78
 4.4.6 Aspirine à faible dose versus placebo après traitement anticoagulant prolongé 79
4.5 TRAITEMENT DE LA TEV A DOMICILE VERSUS A L'HÔPITAL .. 81
 4.5.1 Traitemet à domicile versus traitement à l'hôpital de la thrombose veineuse profonde........... 81
 4.5.2 Traitemet à domicile (sortie précoce) versus traitement à l'hôpital de l'embolie pulmonaire..... 82
4.6 PRÉVENTION DU SYNDROME POST-THROMBOTIQUE ... 84
 4.6.1 Bas de compression graduée versus absence de bas de compression graduée 84
 4.6.2 Bas de compression graduée versus absence de bas de compression graduée, après 6 mois de traitement pharmacologique + bas de compression graduée .. 85
 4.6.3 Bas de compression élastiques à hauteur de cuisse versus bas de compression élastiques en dessous du genou ... 86
5 RESUMÉ DES RESULTATS: LA THROMBOPROPHYLAAXIE DANS LA CHIRURGIE MAJEURE DE LA HANCHE . 87
 5.1 TRAITEMENT PHARMACOLOGIQUE VERSUS PLACEBO DANS LA CHIRURGIE ELECTIVE DE LA HANCHE .. 89
 5.1.1 HBPV versus placebo dans la chirurgie élective de la hanche .. 89
 5.1.2 HBPM versus placebo dans l’arthroplastie élective de la hanche .. 91
 5.2 TRAITEMENT PHARMACOLOGIQUE VERSUS ABSENCE DE THROMBOPROPHYLAXIE DANS LA CHIRURGIE POUR FRACTURE DE LA HANCHE ... 92
 5.2.1 HBPV versus absence de thromboprophylaxie dans la chirurgie pour fracture de la hanche 92
 5.2.2 HBPM versus absence de thromboprophylaxie dans la chirurgie pour fracture de la hanche 94
 5.2.3 Antagonistes de la vitamine K versus absence de thromboprophylaxie dans la chirurgie pour fracture de la hanche ... 95
 5.3 TRAITEMENT PHARMACOLOGIQUE VERSUS TRAITEMENT PHARMACOLOGIQUE POUR LA THROMBOPROPHYLAAXIE DANS L’ARTHROPLASTIE ELECTIVE DE LA HANCHE ... 97
 5.3.1 Antagonistes de la vitamine K versus HBPM dans l’arthroplastie élective de la hanche 97
 5.3.2 Dabigatran versus énoxaparine dans l’arthroplastie élective de la hanche 98
 5.3.3 Apixaban versus énoxaparine dans l’arthroplastie élective de la hanche 101
 5.3.4 Rivaroxaban versus énoxaparine dans l’arthroplastie élective de la hanche 103
 5.3.5 Traitement à long terme par rivaroxaban versus traitement à court terme par énoxaparine dans l’arthroplastie élective de la hanche ... 105
 5.3.6 Aspirine versus daltéparine après un traitement initial de 10 jours par daltéparine pour la thromboprophylaxie prolongée dans l’arthroplastie élective de la hanche 107
6 RESUME DES RESULTATS: LA THROMBOPROPHYLAXIE DANS L’ARTHROPLASTIE ELECTIVE DU GENOU 115

6.1 TRAITEMENT PHARMACOLOGIQUE VERSUS PLACEBO POUR LA THROMBOPROPHYLAXIE DANS L’ARTHROPLASTIE ELECTIVE DU GENOU……
11.4.1 Fondaparinux .. 192
11.4.2 **Apixaban** ... 192
11.4.3 **Rivaroxaban** .. 193

12 **ANNEXE 1. REFLEXIONS CRITIQUES – CONTEXTE HISTORIQUE (FR)** .. 195

12.1 **TRAITEMENT DE LA THROMBOEMBOLIE VEINEUSE - ETUDES VERSUS PLACÉBO** .. 195
12.2 **ETUDES DE NON-INFERIORITÉ** .. 197
12.3 **LE DIAGNOSTIC MODERNE DES EMBOLIES PULMONAIRES** .. 201

13 **REFERENCES** ... 203
Abréviations

ACL: anterior cruciate ligament
AE: adverse events
ALT: alanine aminotransferase
AR: absolute risk
ARD: absolute risk difference
ARI: absolute risk increase
ARR: absolute risk reduction
ASA: acetyl salicylic acid
AST: aspartate aminotransferase
AT: serum alanine aminotransferase and aspartate aminotransferase.
AVK: antagonistes de la vitamine K
BCE: bas de contention élastiques
BID: twice daily
CES: compression elastic stocking
CI: confidence interval
CO: crossover RCT
DB: double blind
DUS: duplex ultrasound
DVT: deep vein thrombosis
GCS: graduated compression stockings
HBPM: héparines de bas poids moléculaire
HIT: heparin induced thrombocytopenia
HR: hazard ratio
INR: international normalized ratio
IPC: intermittent pneumatic compression
ITT: intention-to-treat analysis
LMWH: low molecular weight heparin
MA: meta-analysis
n: number of patients
N: number of studies
NA: not applicable
NR: not reported
NS: not statistically significant
NT: no statistical test
OA: oral anticoagulation
OL: open label
OR: odds ratio
PA: pulmonary angiogram
PE: pulmonary embolism
PG: parallel group RCT
PO: primary outcome
PP: per protocol analysis
PTS: post-thrombotic syndrome
QD: once daily
RCT: randomized controlled trial
RR: relative risk
SB: single blind
SPT: syndrome post-thrombotique
TEV: thromboembolie veineuse
THA: total hip arthroplasty
THR: total hip replacement
TKA: total knee arthroplasty
TKR: total knee replacement
TVP: thromboembolie veineuse profonde
UFH: unfractionated heparin
ULN: upper limit of the normal range
VKA: vitamin K antagonists
VTE: venous thromboembolism
1 Méthodologie

1.1 Introduction et formulation de la question

Cette recherche de la littérature a été exécutée en préparation à la conférence de consensus sur ‘Prévention et traitement de thromboembolies veineuses’ qui se déroulera le 21 novembre 2013.

1.1.1 Questions du jury

Les questions du jury ont été formulées ainsi par le comité d’organisation de l’INAMI:

<table>
<thead>
<tr>
<th>Question – Vraag 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quels sont les facteurs de risque de thrombose veineuse profonde et d’embolie pulmonaire?</td>
</tr>
<tr>
<td>Welke zijn de risicofactoren voor een diepe veneuze trombose en longembolie?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question – Vraag 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment pose-t-on le diagnostic de thrombose veineuse profonde / embolie pulmonaire en 2013?</td>
</tr>
<tr>
<td>Hoe wordt de diagnose van diepe veneuze trombose / longembolie in 2013 gesteld?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question – Vraag 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quel est le traitement d’une thrombose veineuse profonde / embolie pulmonaire en première ligne de soins ?</td>
</tr>
<tr>
<td>Hoe wordt een diepe veneuze trombose / longembolie in de eerstelijnsgezondheidszorg behandeld?</td>
</tr>
<tr>
<td>- quel est le traitement initial ?</td>
</tr>
<tr>
<td>- welke startbehandeling wordt toegepast?</td>
</tr>
<tr>
<td>- quelle est la durée optimale du traitement initial?</td>
</tr>
<tr>
<td>- wat is de optimale duur van de startbehandeling?</td>
</tr>
<tr>
<td>- quand faut-il hospitaliser ?</td>
</tr>
<tr>
<td>- wanneer moeten patiënten in het ziekenhuis worden opgenomen?</td>
</tr>
<tr>
<td>- quel médicament utilise-t-on pour la prévention de la récidive et pour quelle durée ?</td>
</tr>
<tr>
<td>- welk geneesmiddel wordt er gebruikt om een recidief te voorkomen en hoe lang?</td>
</tr>
<tr>
<td>- comment faut-il prévenir ou traiter le syndrome postphlébitique ?</td>
</tr>
<tr>
<td>- hoe wordt het postflebitissyndroom voorkomen of behandeld?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question – Vraag 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quand et comment traiter une thrombose veineuse superficielle?</td>
</tr>
<tr>
<td>Wanneer en hoe wordt een oppervlakkige veneuze trombose behandeld?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question – Vraag 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quel est le traitement préventif après un premier événement TEV ?</td>
</tr>
<tr>
<td>Wat is de preventieve behandeling na een eerste voorval van VTE?</td>
</tr>
<tr>
<td>Quelle est sa durée ?</td>
</tr>
<tr>
<td>Wat is zijn duur?</td>
</tr>
<tr>
<td>Quel est le traitement préventif après récidive(s) de TEV ?</td>
</tr>
<tr>
<td>Wat is de preventieve behandeling na herhaling(en) van VTE?</td>
</tr>
<tr>
<td>Quelle est sa durée ?</td>
</tr>
</tbody>
</table>
Wat is zijn duur?
Quel est le traitement d’un syndrome post-phlébitique?
Wat is de behandeling van een postflebitissyndroom?

Question – Vraag 6
Un traitement préventif d’une TEV est-il indiqué en cas de :
Is een preventieve behandeling van een VTE aangewezen in geval van een:
- chirurgie orthopédique majeure ?
 majeure orthopedische ingreep?
- autre chirurgie majeure (non oncologique) ?
 andere majeure (niet-oncologische) ingreep?
- arthroscopie du genou ?
 arthroscopie van de knie?
- immobilisation plâtrée ?
 immobilisatie met gipsverband?
- alitement pour raison médicale ?
 bedrust om medische redenen?
- voyage avec immobilisation prolongée ?
 reis met langdurige immobilisatie?
Quand et comment ?
Wanneer en hoe moet dit gebeuren?

Question – Vraag 7
Un traitement préventif d’une TEV est-il indiqué et si oui lequel
Is een preventieve behandeling van een VTE aangewezen en zo ja, welke:
- en chirurgie oncologique ?
 in geval van oncologische heelkunde?
- chez le patient oncologique hors chirurgie
 bij kankerpatiënten die niet heelkundig behandeld worden?
Pour quelle durée ?
Hoe lang wordt er behandeld?

Question – Vraag 8
Gestion d’un traitement anticoagulant / antithrombotique en première ligne de soins
Management van een behandeling met anticoagulantia / antitrombotische middelen in de eerstelijnsgezondheidszorg
- interactions importantes, médicamenteuses et non médicamenteuses (listes de référence), y compris automédication ?
 ernstige medicamenteuze en niet-medicamenteuze interacties (referentielijsten), met inbegrip van zelfmedicatie?
- arrêt en fonction de quels interventions chirurgicales et dans quel délai ?
 stopzetting in functie van welke heilkundige ingrepen en binnen welke termijn?
- surveillance biologique nécessaire (initiale et termes à prévoir)
 de biologische parameters die moeten opgevolgd worden? (Wanneer starten en hoe lang opvolgen?)
- quels facteurs / interventions pour améliorer l’observance thérapeutique et la sécurité d’emploi ?
 mogelijke factoren / interventies om de therapietrouw en de gebruiksveiligheid te verbeteren?
1.1.2 Mission du groupe de recherche bibliographique

Le comité d'organisation a ainsi délimité la mission pour la recherche de littérature :

- Discussion de certaines recommandations de bonne pratique en rapport avec les questions du jury numéros 1, 2, 3, 5 et 6 du jury.

- Rechercher les synthèses méthodiques, les méta-analyses et les études randomisées et contrôlées (RCT) (et les grandes études observationnelles pour les critères d’évaluation de sécurité rares) portant sur les populations, les comparaisons et les critères d’évaluation suivants :
1.1.2.1 Populations

Les populations suivantes doivent être examinées

<table>
<thead>
<tr>
<th>1. Patients présentant une TEV (TVP des membres inférieurs ou EP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exclus : autres sites de TVP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Patients à risque de développer une TEV, en raison de :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chirurgie</th>
<th>Chirurgie orthopédique majeure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arthroplastie de la hanche programmée</td>
</tr>
<tr>
<td></td>
<td>Arthroplastie du genou programmée</td>
</tr>
<tr>
<td></td>
<td>Chirurgie pour fracture de la hanche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chirurgie orthopédique non majeure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopie du genou</td>
</tr>
<tr>
<td>Plâtre du membre inférieur (également non chirurgical)</td>
</tr>
</tbody>
</table>

(Exclus : toutes les autres chirurgies orthopédiques)

<table>
<thead>
<tr>
<th>Chirurgie générale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastro-intestinale</td>
</tr>
<tr>
<td>Gynécologique</td>
</tr>
<tr>
<td>Laparoscopique</td>
</tr>
<tr>
<td>Thoracique</td>
</tr>
<tr>
<td>Urologique</td>
</tr>
</tbody>
</table>

Chirurgie chez les patients cancéreux
(Exclus: chirurgie crânienne, rachidienne, de jour, esthétique, ORL, buccale, maxillofaciale, cardiaque, vasculaire, et césariennes)

<table>
<thead>
<tr>
<th>Affection médicale (avec immobilisation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient médical général</td>
</tr>
<tr>
<td>Accident vasculaire cérébral</td>
</tr>
<tr>
<td>Cancer</td>
</tr>
</tbody>
</table>

(Exclus : syndrome coronarien aigu, lésion rachidienne, soins palliatifs non cancéreux, soins aux malades en phase critique, grossesse, traumatisme majeur)

Voyage avec immobilisation prolongée
1.1.2.2 Interventions

Seuls les produits avec une indication enregistrée en Belgique seront pris en considération. Ces produits sont énumérés ci-après :

<table>
<thead>
<tr>
<th>Pharmacologiques</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>o Agents antiplaquettaires</td>
<td>Acide acétylsalicylique</td>
</tr>
<tr>
<td>o Anticoagulants</td>
<td></td>
</tr>
<tr>
<td>o Héparine</td>
<td></td>
</tr>
<tr>
<td>o Héparine non fractionnée (HNF)</td>
<td>Daltéparine</td>
</tr>
<tr>
<td>o Héparine de bas poids moléculaire (HBPM)</td>
<td>Énoxaparine</td>
</tr>
<tr>
<td></td>
<td>Nadroparine</td>
</tr>
<tr>
<td></td>
<td>Tinzaparine</td>
</tr>
<tr>
<td>o Antagonistes de la vitamine K (AVK)</td>
<td>Acénocoumarol</td>
</tr>
<tr>
<td></td>
<td>Phenprocoumone</td>
</tr>
<tr>
<td></td>
<td>Warfarine</td>
</tr>
<tr>
<td>o Inhibiteurs de la thrombine</td>
<td>Dabigatran (nouvel anticoagulant)</td>
</tr>
<tr>
<td>o Inhibiteurs du facteur Xa</td>
<td>Apixaban (nouvel anticoagulant)</td>
</tr>
<tr>
<td></td>
<td>Rivaroxaban (nouvel anticoagulant)</td>
</tr>
<tr>
<td></td>
<td>(Exclu : fondaparinux)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non pharmacologiques</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>o Bas de contention à compression graduée (BCG)</td>
<td></td>
</tr>
<tr>
<td>(Exclus : autres dispositifs de contention ou de mouvement, filtre de la veine cave)</td>
<td></td>
</tr>
</tbody>
</table>

1.1.2.3 Comparaisons

Les comparaisons suivantes sont à signaler

a. **Patients présentant une TEV**

- Traitement initial
 - Interventions pharmacologiques
 - Placebo
 - HNF
 - HBPM
 - AVK
 - Nouvel anticoagulant

<table>
<thead>
<tr>
<th>Placebo</th>
<th>HNF</th>
<th>HBPM</th>
<th>AVK</th>
<th>Nouvel anticoagulant</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nouvel anticoagulant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Autres comparaisons
 - Soins ambulatoires vs hospitaliers

- Traitement à long terme (prévention secondaire)
 - Interventions pharmacologiques

<table>
<thead>
<tr>
<th>Placebo</th>
<th>HNF</th>
<th>HBPM</th>
<th>AVK</th>
<th>Nouvel anticoagulant</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AVK
Nouvel anticoagulant
Agents antiplaquettaires

- Autres comparaisons
 - Longue durée vs courte durée

- Prévention du syndrome post-thrombotique
 - BCG vs absence de BCG
 - BCG courts (en dessous du genou) vs longs (à hauteur de la cuisse)
 - BCG de longue durée vs de courte durée

b. Patients présentant un risque de TEV
- Interventions pharmacologiques et non pharmacologiques

<table>
<thead>
<tr>
<th>Placebo</th>
<th>BCG</th>
<th>HNF</th>
<th>HBPM</th>
<th>AVK</th>
<th>Nouvel anticoagulant</th>
<th>AAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nouvel anticoagulant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBPM + BCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVK + BCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nouvel anticoagulant + BCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Autres comparaisons
 - Traitement de longue durée vs de courte durée

1.1.2.4 Critères de jugement

Les critères d’évaluation suivants doivent être débattus

- Mortalité toutes causes confondues
- Thrombose veineuse profonde (TVP) symptomatique / non symptomatique
- Embolie pulmonaire (EP) symptomatique / non symptomatique
- Événements hémorragiques majeurs
- Événements hémorragiques mineurs
- Syndrome post-thrombotique (SPT)
- Préférence du patient, qualité de vie, facilité d’emploi
1.1.2.5 **Critères d'études :**

- **Efficacité**
 - Design d'étude
 - RCT
 - Au moins en simple aveugle lorsque la mise en aveugle est possible.
 - Durée des RCT : aucune durée n'est mentionnée.
 - Nombre minimum de participants : minimum 40 par bras d'étude. Dans les études à bras multiples, nous avons regardé le nombre de participants dans les comparaisons qui étaient pertinentes pour cette revue de la littérature.
 - Essais de phase III (aucun essai de phase II)

- **Sécurité** :
 - Informations issues des RCTs sélectionnées
 - Informations supplémentaires issues de grandes études d’observation.

1.1.2.6 **Guides de Pratique Clinique (GPC)**

Uniquement les GPC évoquant des niveaux de preuves / recommandation
Uniquement les GPC à partir de 2009.
Les GPC ont été sélectionnés en concertation avec le comité d’organisation et sur base de leur pertinence pour la situation belge.
Sommaire des points communs et des contradictions.
Le groupe de recherche bibliographique indiquera aussi si le guide de pratique clinique a été réalisée en collaboration avec d’autres professions paramédicales (pharmaciens, infirmiers,…ou des représentants de patients), et si ces GPC s’adressent également à ces groupes.
1.2 Stratégie de recherche

1.2.1 Principes de recherche systématique

En procédant par paliers, nous avons fait une recherche systématique de la littérature pertinente:

- Dans un premier temps, nous avons consulté les sources qui utilisent les données provenant de synthèses méthodiques, de méta-analyses et d’études originales et qui en plus les commentent, comme Clinical Evidence. Nous avons consulté les guides de pratique clinique (guidelines) à la recherche de références pertinentes supplémentaires.
- Dans un deuxième temps, nous avons recherché les synthèses méthodiques de grande envergure dans des bases de données EBM fiables (NICE, AHRQ the Cochrane Library,...) qui fournissaient des réponses à nos questions de recherche. Une ou plusieurs synthèse(s) méthodique(s) ont été sélectionnées comme document de base. A partir de celles-ci, des références de publications pertinentes ont été recherchées manuellement.
- Dans un troisième temps, nous avons recherché de façon systématique les études randomisées et contrôlées (RCTs), les méta-analyses et synthèses méthodiques plus petites, parues après la date de recherche des synthèses méthodiques sélectionnées.

Les banques de données électroniques suivantes ont été consultées:
- Medline (PubMed)
- Cochrane Library

Des recherches manuelles ont été effectuées à partir d’autres sources: les références bibliographiques données dans les publications pertinentes sur le sujet, l’index des publications disponibles à la bibliothèque de vzw Farmaka asbl, particulièrement des revues indépendantes qui sont membres de l’ISDB (International Society of Drug Bulletins) telles que le Geneesmiddelenbulletin (Pays-Bas), les Folia Pharmacotherapeutica (Belgique), la Revue Prescrire (France), Drug & Therapeutics Bulletin (Royaume-Uni), Therapeutics Letter (Canada), Formul R/info (Belgique), Arzneimittelbrief (Allemagne),....

Les guides de pratique clinique ou recommandations de bonne pratique ont été recherchés au départ des liens vers les « evidence-based guidelines », disponibles sur le site web de vzw Farmaka asbl (www.farmaka.be) et sur le site web du CEBAM (www.cebam.be). Ces sites comportent des liens vers des recommandations nationales et internationales les plus consultées, ainsi que des liens vers des ‘moteurs de recherche de recommandations’, tels que la National Guideline Clearinghouse et G-I-N.
1.2.2 Détails concernant la stratégie de recherche

Les synthèses méthodiques ou méta-analyses suivantes ont été sélectionnées en tant que document source :

Afin de retrouver les RCTs parues après la date de recherche des publications ci-dessus, une recherche systématique a été exécutée dans Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/). Dans certains cas, lorsque les synthèses méthodiques / méta-analyses ne suffisaient pas (p.ex. pas d’analyse de tous les produits), des RCTs supplémentaires (parues avant la date de recherche) ont été recherchées.

La stratégie de recherche suivante a été utilisée :

(((Thromboembolism OR Thrombophebitis OR Venous Thrombosis OR vein thrombosis[TIAB] OR dvt OR vte OR Pulmonary Emboli*) AND (Heparin* OR UFH OR LMWH OR dalteparin OR Enoxaparin OR nadroparin OR tinzaparin OR Danaparoid OR vitamin K antagonist* OR anticoagula* OR acenocoumarol OR phenprocoucon OR warfarin OR pentasaccharide* OR indirect factor Xa inhibit* OR direct thrombin inhibitor* OR dabigatran OR apixaban OR rivaroxaban) AND (randomized controlled trial OR random*[TIAB] OR controlled clinical trial OR placebo OR systematic[sb] OR medline[TIAB]) AND (“2011”[PDat] : “2013/07/01”[PDat]))) OR ((post-thrombotic syndrome OR postthrombotic syndrome) AND (prevention OR treatment) AND (randomized controlled trial OR random*[TIAB] OR controlled clinical trial OR placebo OR systematic[sb] OR medline[TIAB]) AND (“2011”[PDat] : “2013/07/01”[PDat]))) OR ((Thromboprophyla* OR ((prophylaxis OR prevention) AND venous thrombosis*)) AND (Heparin* OR UFH OR LMWH OR dalteparin OR Enoxaparin OR nadroparin OR tinzaparin OR Danaparoid OR vitamin K antagonist* OR anticoagula* OR acenocoumarol OR phenprocoucon OR warfarin OR pentasaccharide* OR indirect factor Xa inhibit* OR direct thrombin inhibitor* OR dabigatran OR apixaban OR rivaroxaban) AND (surgery OR surgical OR hip OR knee OR “General Surgery”[Mesh] OR “Orthopedic Procedures”[Mesh] OR medical patient* OR stroke OR cancer OR immobi* OR restricted mobility OR ”mobility limitations” OR ”plaster cast” OR ”casts, surgical”[Mesh] OR arthroscopy OR ”Arthroscopy”[Mesh] OR travel*) AND (randomized controlled trial OR random*[TIAB] OR controlled clinical trial OR placebo OR systematic[sb] OR medline[TIAB]) AND (“2008/04”[PDat] : ”2013/07/01”[PDat]))) NOT (animals[MESH] NOT humans[MESH])

1.3 Procédure de sélection

Nous avons appliqué les critères d’inclusion suivants lors de la sélection des méta-analyses et des synthèses méthodiques (systematic reviews) pertinentes:
- concordance entre la question abordée dans la publication et la problématique de notre recherche dans la littérature
- stratégie de recherche systématique
- rapport systématique des résultats
- inclusion d’études randomisées et contrôlées
- mention de critères de jugement cliniquement pertinents

Les critères d’inclusion pour les études randomisées contrôlées (RCTs) sont mentionnés plus haut dans le §1 avec mention des interventions, critères de jugement et d’étude pertinents.

Diverses publications ont été exclues pour des raisons pratiques:
- les publications non disponibles en bibliothèque en Belgique
- les publications dans des langues autres que Néerlandais, Français, Allemand et Anglais.
1.4 Évaluation de la qualité des preuves disponibles

Afin d'évaluer la qualité des preuves disponibles, nous avons utilisé le système GRADE. Dans d'autres systèmes qui attribuent des « niveaux de preuves », les méta-analyses sont souvent perçues comme le plus haut niveau de preuve. Par contre, GRADE n'évalue que la qualité des études originales. La sommation ou non des résultats dans la méta-analyse n'a pas d'importance pour la qualité des preuves.

Le système GRADE est centré sur les critères de jugement. Cela signifie que la qualité des preuves est évaluée pour chaque critère de jugement à travers toutes les études.

Le système GRADE3,4,5 évalue les points suivants :

<table>
<thead>
<tr>
<th>Study design</th>
<th>+ 4</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 2</td>
<td>Observational</td>
</tr>
<tr>
<td></td>
<td>+ 1</td>
<td>Expert opinion</td>
</tr>
<tr>
<td>Study quality</td>
<td>- 1</td>
<td>Serious limitation to study quality</td>
</tr>
<tr>
<td></td>
<td>- 2</td>
<td>Very serious limitation to study quality</td>
</tr>
<tr>
<td>Consistency*</td>
<td>- 1</td>
<td>Important inconsistency</td>
</tr>
<tr>
<td>Directness**</td>
<td>- 1</td>
<td>Some uncertainty about directness</td>
</tr>
<tr>
<td></td>
<td>- 2</td>
<td>Major uncertainty about directness</td>
</tr>
<tr>
<td>Imprecision***</td>
<td>- 1</td>
<td>Imprecise or sparse data</td>
</tr>
<tr>
<td>Publication bias</td>
<td>- 1</td>
<td>High probability of publication bias</td>
</tr>
<tr>
<td>For observational studies</td>
<td>Evidence of association</td>
<td>+ 1</td>
</tr>
<tr>
<td></td>
<td>+ 2</td>
<td>Very strong evidence of association (RR of >5 or <0.2)</td>
</tr>
<tr>
<td></td>
<td>Dose response gradient</td>
<td>+ 1</td>
</tr>
<tr>
<td></td>
<td>Confounders</td>
<td>+ 1</td>
</tr>
<tr>
<td>SUM</td>
<td>4</td>
<td>HIGH quality of evidence</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>MODERATE quality of evidence</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>LOW quality of evidence</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>VERY LOW quality of evidence</td>
</tr>
</tbody>
</table>

* Consistency refers to the similarity of estimates of effect across studies. if there is important unexplained inconsistency in the results, our confidence in the estimate of effect for that outcome decreases. Differences in the direction of effect, the size of the differences in effect, and the significance of the differences guide the (inevitably somewhat arbitrary) decision about whether important inconsistency exists.

** Directness: there are two types of indirectness of evidence. The first occurs when considering, for example, use of one of two active drugs. Although randomised comparisons of the drugs may be unavailable, randomised trials may have compared one drug with placebo and the other with placebo. Such trials allow indirect comparisons of the magnitude of effect of both drugs. Such evidence is of lower quality than would be provided by head to head comparisons of the drugs. The second type of indirectness of evidence includes differences between the population, intervention, comparator to the intervention, and outcome of interest, and those included in the relevant studies.

***Imprecision: When studies include relatively few patients and few events and thus have wide confidence intervals, a guideline panel will judge the quality of the evidence to be lower.
Dans cette recherche de la littérature, l’item « publication bias » et les items spécialement prévus pour les études d’observation (voir tableau ci-dessus) ne sont pas cotés. Cette version adaptée du système GRADE évalue donc les points suivants:

<table>
<thead>
<tr>
<th>Study design</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study quality</td>
<td>- 4</td>
</tr>
<tr>
<td>Consistency</td>
<td>- 2</td>
</tr>
<tr>
<td>Imprecision</td>
<td>- 1</td>
</tr>
<tr>
<td>SUM</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study design</th>
<th>High quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study quality</td>
<td>Moderate quality of evidence</td>
</tr>
<tr>
<td>Consistency</td>
<td>Low quality of evidence</td>
</tr>
<tr>
<td>Imprecision</td>
<td>Very low quality of evidence</td>
</tr>
</tbody>
</table>

Lors de l’évaluation des différents items, nous avons suivi la méthode de travail suivante:

Study design

Toutes les études de cette recherche de la littérature sont par définition des RCT (critères dinclusion). « Study design » n’est donc pas repris séparément comme critère d’évaluation dans le rapport de synthèse pour cette raison.

Study quality

Pour évaluer la qualité méthodologique des RCT, nous avons pris en compte les critères suivants.

Randomisation : Si la méthode consistant à générer une séquence de randomisation était décrite, était-elle adéquate (table de nombres aléatoires, créé par ordinateur, partie de pile ou face, etc...) ou inadéquate (alternance, date de naissance, numéro d’hôpital etc.) ?

Dissimulation de l’attribution: Si la méthode d’attribution était décrite, était-elle dissimulée de manière adéquate (répartition centrale, etc.) ou inadéquate (programme ouvert, enveloppes non scellées, etc.) ?

Mise en aveugle : Qui a été mis en aveugle ? Participants/personnel/évaluateurs

Si la méthode de mise en aveugle était décrite, était-elle adéquate (placebo identique, placebo actif, etc.) ou inadéquate (comparaison entre comprimé et injection sans double placebo) ?

Données manquantes pour les critères de jugement :

Suivi, description des exclusions et abandonns, ITT

Notification sélective des critères de jugement

Si une méta-analyse ou une synthèse méthodique est utilisée, la qualité des études incluses était évaluée. L’évaluation GRADE ne prend pas en compte la qualité de la méta-analyse ou de la synthèse méthodique, mais uniquement la qualité des RCT inclus dans la méta-analyse/synthèse méthodique.
Application dans GRADE :
Des points étaient déduits si l'un des critères ci-dessus était considéré comme induisant un risque élevé de biais pour un critère de jugement spécifique.
Par exemple :
- La non-mise en aveugle des participants ne réduira pas la validité des résultats lors de la prise en compte du critère de jugement 'mortalité', mais réduira la validité lors de la prise en compte d'un critère de jugement subjectif tel que la douleur ; dès lors, un point sera déduit pour le critère de jugement 'douleur'.
- Un suivi faible en l'absence d'analyse en ITT augmentera le risque de biais, de sorte qu'un point sera déduit dans un tel cas.

Consistency

Une bonne « consistency » signifie que plusieurs études obtiennent un résultat comparable ou convergent. S'il n'y a qu'une étude de disponible, « consistency » ne peut être évalué. Ceci est mentionné dans le rapport de synthèse comme « NA » (not applicable).

« Consistency » est apprécié par le groupe bibliographique et le comité de lecture sur base de l'ensemble des études disponibles. Pour ce faire, on a pris en compte les critères suivants:
- Signification statistique
- Le sens de l’effet si la signification statistique n’est pas atteinte: si par exemple un effet statistiquement significatif est obtenu dans 3 études et est confirmé dans 2 autres études par un résultat dans le même sens mais non significatif statistiquement, alors ces résultats sont appelés « consistent ».
- Pertinence clinique: si par exemple 3 études trouvent une différence non significative et une 4° étude trouve un résultat statistiquement significatif, mais peu pertinent cliniquement, ces résultats sont appelés « consistent ».
- Pour les méta-analyses : hétérogénéité statistique démontrée

Directness

Cela concerne le pouvoir de généraliser les données vers la population réelle (validité externe). Donc, des points peuvent être déduits si la population d’étude, l’intervention en question et le groupe contrôle ou les critères de jugement en question ne sont pas pertinents. Un point est également déduit en cas de comparaisons indirectes

Imprecision

Si des synthèses méthodiques ou méta-analyses sont incluses, reprenant à leur tour des études comptant moins de 40 patients par bras d’étude (pour une étude de permutation : moins de 40 patients pour l’étude complète), 1 point est alors déduit pour cause « d’imprécision ».
Pour les méta-analyses et lorsqu’il n’y a qu’une seule étude : un point est déduit en cas de puissance insuffisante (dépend aussi de la taille de l’échantillon).
Appliquer le système GRADE quand il y a beaucoup d'études pour un seul critère de jugement :

Des points sont déduits uniquement si les erreurs méthodologiques influencent fortement le résultat. Si, par exemple, 1 étude de mauvaise qualité confirme les avis de 2 grandes études de bonne qualité, aucun point n’est déduit.

Pour davantage d’informations, veuillez consulter le site http://www.gradeworkinggroup.org
1.5 Résumé des résultats d’étude

Le rapport complet comprend par question de recherche :

- Les tableaux de preuves (en anglais) des synthèses méthodiques et/ou des RCTs sur lesquels se basent les réponses
- Un bref résumé des résultats sous forme de tableau (en anglais) et de texte (en anglais) avec une évaluation de la qualité des preuves trouvées selon une version adaptée du système GRADE

Le rapport de synthèse comprend par question de recherche :

- Un bref résumé des résultats sous forme de tableau (en anglais) et de texte (français / néerlandais) avec une évaluation de la qualité des preuves trouvées selon une version adaptée du système GRADE.

Les conclusions ont été débattues et adaptées dans des discussions entre les auteurs de la recherche de la littérature et le comité de lecture du groupe bibliographique.

Références

2. Minerva is a journal for evidence-based medicine published in Belgium. Website: www.minerva-ebm.be
1.6 L’interprétation des critères de jugement dans les tableaux d’évidence

Les critères jugement (outcomes) rapportés sont :

- **Event rate = taux d’événements (risque absolu)** pour le groupe d'intervention et le groupe témoin.
 Pour les critères de jugement binaires tels que, par exemple, le nombre de patients avec un effet indésirable, les taux d'événements sont présentés avec des pourcentages (où n/N; numérateur = nombre total de patients avec un événement, dénominateur = nombre total de patients).
 Des taux d'événements sont également rapportés pour les méta-analyses. Remarque : les taux d'événements rapportés pour les méta-analyses sont des chiffres bruts (où n/N; numérateur = nombre total de patients avec un événement, dénominateur = nombre total de patients dans toutes les études ; avec des pourcentages). Ces chiffres ne sont pas le résultat d'une méta-analyse (donc entre autre, aucune pondération n’a été faite). Ils sont uniquement rapportés pour donner une idée générale du risque absolu.

- **Risque relatif**, avec un intervalle de confiance à 95 % (comme calculé par les auteurs de la RCT ou de la méta-analyse)

- **Effet absolu ou différence absolue de risque (absolute risk difference)**, avec un intervalle de confiance à 95 % pour certaines RCTs et certaines méta-analyses.
 Cet « effet absolu » rapporté à propos de certaines méta-analyses, a été fourni par les auteurs de la méta-analyse. Cette différence absolue en termes de taux d'événements a été calculée avec le logiciel GRADEpro en appliquant le risque relatif calculé (issu de la méta-analyse) au taux total d'événements dans le bras d'étude des études sommées. Le but est de donner une estimation illustrative de la différence absolue en termes de taux d'événements.
References

2. Minerva is a journal for evidence-based medicine published in Belgium. Website: www.minerva-ebm.be
2 Réflexions critiques du comité de lecture et du groupe de revue de la littérature

Populations de patients incluses dans les études

- Études portant sur le traitement des TEV
 Les études incluent soit :
 - Des patients souffrant de TVP aiguë, à l’exclusion des patients souffrant d’EP
 - Des patients souffrant d’EP aiguë (avec ou sans TVP)
 - Des patients souffrant de TEV aiguë (TVP et/ou EP)

- Traitement des TVP distales
 Il existe très peu d’études portant sur le traitement des TVP distales et la plupart d’entre elles ne répondaient pas aux critères d’inclusion en raison de leur taille, des interventions utilisées ou des critères d’évaluation rapportés. Certaines études portant sur le traitement des TEV excluent spécifiquement les TVP distales, tandis que d’autres les autorisent, mais ne font pas de rapports distincts au sujet de ce sous-groupe.

 Aucune étude mettant l’accent sur l’embolie pulmonaire asymptomatique ou sous-segmentaire n’a été incluse. L’apparition de nouvelles techniques d’imagerie permet de diagnostiquer plus de patients avec (des cas moins graves) d’embolie pulmonaire. On ne sait pas si ces cas nécessitent le même traitement que les embolies pulmonaires « majeures », cliniquement apparentes. Par ailleurs, l’absence d’études contrôlées par placebo contribue à cette incertitude. (Voir également l’annexe considérations critiques – contexte historique).

- Méta-analyses incluses dans cette revue de la littérature : limitations possibles
 L’objectif d’une méta-analyse est d’obtenir une estimation plus précise de l’effet en regroupant les études. Les populations d’étude de ces études peuvent toutefois varier considérablement les unes des autres (populations d’étude hétérogènes). Par exemple :
 - Dans le traitement de la TEV, certaines études incluent uniquement des patients atteints de TVP, alors que d’autres études incluent uniquement des patients présentant une embolie pulmonaire. Certaines études incluent des patients ayant eu un premier épisode de TEV, alors que d’autres incluent des patients ayant eu un premier ou un second épisode de TEV.
 - Dans la prévention des TEV en chirurgie, des études cliniquement hétérogènes peuvent être regroupées, par exemple avec différentes procédures chirurgicales ou sites chirurgicaux.
 - Chez les patients médicaux, les études peuvent inclure différents tableaux cliniques et degrés d’immobilité.
 - Chez les patients cancéreux, les méta-analyses peuvent inclure des patients à différents stades de la maladie ou avec d’autres types de cancers.

Le problème majeur dans cette situation est que les différentes populations peuvent présenter un risque différent de (récidive de) TEV. Une estimation de l’effet sur base d’une méta-analyse de ces
études peut être moins utile pour le clinicien qui se retrouve face à un patient particulier dans un état clinique particulier. Lors de la réalisation d’une méta-analyse, la présence d’hétérogénéité statistique peut être évaluée. Les causes possibles de l’hétérogénéité peuvent être évaluées par des analyses de sensibilité ou des méta-analyses catégoriques. Il est toutefois possible qu’un test statistique ne trouve pas de grande hétérogénéité alors que les populations incluses sont bel et bien cliniquement hétérogènes.

Comparaisons

- Études portant sur le traitement des TEV
 Très peu d’études comparent un traitement actif par rapport à un placebo en cas de TEV aiguë. Cela poserait bien-sûr des problèmes d’ordre éthique. Peu d’études se concentrent uniquement sur le traitement initial des TEV, et la plupart des études publiées, portant sur le traitement initial, impliquent des comparaisons par rapport à l’HNF, ce qui était exclu de cette revue. La plupart des études examinent la phase de poursuite du traitement et commencent à randomiser les patients après un traitement initial habituel pour les TEV.
 Les études évaluant les nouveaux anticoagulants comparent ces nouveaux anticoagulants à un « traitement conventionnel », il s’agit exclusivement d’études de non-infériorité. Pour l’apixaban comme pour le rivaroxaban, les interventions sont comparées tant au cours de la phase initiale qu’au cours de la phase de traitement à long terme. Cependant, dans ces études, la plupart des patients ont reçu un traitement initial d’une durée de 24 ou 48h par HBPM, héparine ou fondaparinux avant d’être randomisés. Il est donc impossible d’avancer des conclusions sur l’efficacité de l’apixaban et du rivaroxaban lors des deux premiers jours de traitement, par rapport au « traitement conventionnel ». Les études évaluant le dabigatran débutent après un traitement anticoagulant initial habituel chez tous les patients, et l’étude porte donc uniquement sur le traitement de suivi.

- Études sur la prévention de TEV en chirurgie ou chez des patients médicaux non-chirurgicaux
 Des études contrôlées par placebo existent, mais la plupart ne sont pas récentes. Les nouveaux anticoagulants sont évalués par rapport à l’énoxaparine. Toutes ces études sont des études de non-infériorité, à l’exception des études comparant des traitements à long terme avec les nouveaux anticoagulants à un traitement à court terme par énoxaparine. La pertinence clinique de la comparaison de deux produits différents avec une durée de traitement différente est discutable.

Critères d’évaluation

La plupart des études portant sur le traitement des TEV mentionnent les TEV symptomatiques en tant que critère d’évaluation.

La plupart des études relatives à la prévention des TEV chez des patients chirurgicaux ou médicaux rapportent à la fois les TEV symptomatiques et asymptomatiques (TVP) (le plus souvent TVP asymptomatique, par dépistage chez tous les patients). Le taux de TVP asymptomatiques est habituellement beaucoup plus élevé que celui des événements symptomatiques et la pertinence clinique des TVP asymptomatiques n’est pas claire.
Si une TVP asymptomatique constitue une composante d’un critère d’évaluation composite, elle aura un impact important sur la signification statistique de ce critère d’évaluation. Il est cependant méthodologiquement peu valable de concevoir un critère d’évaluation composite combinant à la fois des événements rares, mais graves, et des événements fréquents mais cliniquement moins importants. Malheureusement, les études portant sur les nouveaux anticoagulants mentionnent toutes un critère d’évaluation primaire composite qui combine à la fois les TEV asymptomatiques et symptomatiques et la mortalité. Dans la plupart des études, lorsqu’une TVP est détectée, le patient est exclu de l’étude et traité. Cela permet de lui éviter une évolution naturelle vers une EP (qui est évidemment une bonne chose), mais cela peut conduire à une sous-estimation du nombre de cas d’embolie pulmonaire dans une situation clinique.

Qualité des études

- **Sponsoring**

La plupart des études étaient sponsorisées par des firmes pharmaceutiques. Toutes les études évaluant les nouveaux anticoagulants étaient sponsorisées.

- **Non-inferiority trials**

(1-3).

Le choix de la marge de non-infériorité est important : une marge très large prouvera plus facilement la non-infériorité statistique, mais suscite des doutes au sujet de l’efficacité réelle et des bénéfices cliniques. Pour être valable, le choix de la marge doit être basé sur les précédentes études contrôlées par placebo, évaluant le comparateur, ce qui n’est pas toujours le cas. Bon nombre des études de non-infériorité incluses n’ont pas motivé le choix de la marge de non-infériorité.

Il existe peu d’études contrôlées par placebo sur le traitement de la TEV. Le traitement par placebo de patients atteints de thrombo-embolie veineuse n’est plus considéré comme éthiquement acceptable. C’est pourquoi il est difficile de fixer une marge de non-infériorité fiable. C’est le cas des études de non-infériorité avec des HBPM versus warfarine (voir annexe Considérations critiques – aperçu historique) et des études qui comparent les nouveaux anticoagulants aux HBPM ou aux antagonistes de la vitamine K dans le traitement de la TEV. Lorsque l’effet du produit à comparer par rapport au placebo n’est pas connu, il reste incertain de savoir si un nouveau produit est vraiment plus efficace que le placebo.

Dans une étude de non-infériorité, l’analyse statistique doit à la fois consister en une analyse par protocole et une analyse en intention de traiter (1, 2). Ceci n’est pratiquement jamais le cas dans les études incluses dans cette revue. Souvent, une seule analyse statistique a été réalisée, le plus souvent sur une population « ITT modifiée », en excluant certains patients de l’analyse.

Ceci a constitué un énorme problème dans les études de prévention portant sur les patients chirurgicaux et médicaux : il arrivait souvent que >25 % des patients soient exclus des analyses (le plus souvent en raison d’un manque de tests diagnostiques au sujet des TVP asymptomatiques).

Pour conclure, le comité de lecture est d’avis qu’il y a un manque important de preuves pour le traitement de la TEV. Espérons que les études futures pourront répondre à ce manque. Plus le
spectre de l’embolie pulmonaire s’étend et inclut également les cas moins graves, plus s’accroît notre insécurité par rapport au fait que le bénéfice d’un traitement l’emporte vraiment sur le risque.

3 Guides de pratique

3.1 Critères pour la sélection des guides de pratique

Afin d’être inclus, le guide de pratique devait être récent (pas plus de 5 ans) et devait rapporter des niveaux de preuve et/ou des niveaux de recommandation. Les guides de pratique suivants remplissaient ces critères :

3.2 Guides de pratique sélectionnés

<table>
<thead>
<tr>
<th>Comprehensive guidelines</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Guidelines on diagnosis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Guidelines on therapy</th>
</tr>
</thead>
</table>
Guidelines on prevention

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Authors</th>
<th>Reference</th>
<th>Link</th>
</tr>
</thead>
</table>
3.3 Résumé des guides de pratique

Voir ‘systematic literature review: full report’

3.4 Discussion et conclusions fondées sur les recommandations

3.4.1 Facteurs de risque pour la TVP et l'EP

Le Nice 2012 présente un aperçu concis des facteurs de risque et mentionne uniquement les facteurs de risque majeurs pour la TVP :
- Antécédents de TVP
- Âge > 60 ans
- Chirurgie
- Obésité
- Voyage de longue durée
- Affection médicale aiguë
- Cancer
- Immobilité
- Thrombophilie
- Grossesse

Le SIGN 2010 formule un plus grand nombre de facteurs de risque et fournit des informations plus détaillées.

Facteurs de risque pour la TEV
- Augmentation du risque liée à l’âge :
 - < 40 ans – incidence annuelle de 1/10 000
 - 60-69 ans – incidence annuelle de 1/1 000
 - > 80 ans – incidence annuelle de 1/100
- Obésité : augmentation d’un facteur 2 à 3 du risque de TEV en cas d’IMC >30 kg/m²
- Varices
- Antécédents familiaux de TEV : au moins 1 parent du premier degré < 50 ans ou plus d’un parent du premier degré, quel que soit son âge
- Thrombophilie
- Autres états thrombogènes
 - Cancer : risque accru d’un facteur 5 à 7 par rapport à la population générale. Le risque dépend du type de cancer. De plus : risque accru en cas de chirurgie, chimiothérapie, etc.
 - Insuffisance cardiaque, infarctus du myocarde récent, AVC
 - Syndrome métabolique
 - Infection sévère aiguë
 - Infection chronique par le VIH
 - Maladie inflammatoire de l’intestin, syndrome néphrotique
 - Maladie myéloproliférative, paraprotéinémie, maladie de Bechet
 - Hémoglobinurie nocturne paroxystique
 - Trait drépanocytaire et drépanocytose
- Contraception orale (préparations combinées), substitution hormonale et anti-estrogènes
- Grossesse, puerpérium
- Immobilité
- Immobilité durant les voyages
- Hospitalisation
- Anesthésie
- Cathéters veineux centraux

Facteurs de risque de récidive d’une TEV
- Antécédent de TEV sans facteurs de risque (TEV non provoquée)
- Homme
- Obésité
- Thrombophilie

La recommandation ACCP 2012 Surgical Prevention traite de la prévention de la TEV dans la chirurgie. Elle mentionne différents scores pour la stratification du risque : le score de Rogers et le score de Caprini. Un très faible risque de TEV (<0,5 %) correspond à un score de Rogers < 7 et à un score de Caprini de 0 ; un faible risque (env. 1,5 %) se traduit par un score de Rogers de 7 à 10 et un score de Caprini de 1 à 2 ; un risque modéré (3,0 %) correspond à un score de Rogers >10 et à un score de Caprini de 3 à 4. Enfin, un score de Caprini de 5 ou plus indique un risque élevé de TEV (env. 6 %).

Rogers score:

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Risk Score Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation type other than endocrine:</td>
<td></td>
</tr>
<tr>
<td>Respiratory and hernic</td>
<td>9</td>
</tr>
<tr>
<td>Thoracoabdominal aneurysm, embolectomy/thrombectomy, venous reconstruction, and endovascular repair</td>
<td>7</td>
</tr>
<tr>
<td>Aneurysm</td>
<td>4</td>
</tr>
<tr>
<td>Mouth, palate</td>
<td>4</td>
</tr>
<tr>
<td>Stomach, intestines</td>
<td>4</td>
</tr>
<tr>
<td>Integument</td>
<td>3</td>
</tr>
<tr>
<td>Hernia</td>
<td>2</td>
</tr>
<tr>
<td>ASA physical status classification:</td>
<td></td>
</tr>
<tr>
<td>3, 4, or 5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Female sex</td>
<td>1</td>
</tr>
<tr>
<td>Work RVU:</td>
<td></td>
</tr>
<tr>
<td>>17</td>
<td>3</td>
</tr>
<tr>
<td>10-17</td>
<td>2</td>
</tr>
<tr>
<td>Two points for each of these conditions:</td>
<td>2</td>
</tr>
<tr>
<td>Disseminated cancer</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy for malignancy within 30 d of operation</td>
<td></td>
</tr>
<tr>
<td>Preoperative serum sodium >145 mmol/L</td>
<td></td>
</tr>
<tr>
<td>Transfusion >4 units packed RBCs in 72 h before operation</td>
<td></td>
</tr>
<tr>
<td>Ventilator dependant</td>
<td></td>
</tr>
<tr>
<td>One point for each of the conditions:</td>
<td>1</td>
</tr>
<tr>
<td>Wound class (clean/contaminated)</td>
<td></td>
</tr>
<tr>
<td>Preoperative hematocrit level ≤ 38%</td>
<td></td>
</tr>
<tr>
<td>Preoperative bilirubin level >1.0 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td></td>
</tr>
<tr>
<td>Score de Caprini :</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>1 Point</td>
<td>2 Points</td>
</tr>
<tr>
<td>Age 41-60 y</td>
<td>Age 61-74 y</td>
</tr>
<tr>
<td>Minor surgery</td>
<td>Arthroscopic surgery</td>
</tr>
<tr>
<td>BMI >25 kg/m²</td>
<td>Major open surgery (>45 min)</td>
</tr>
<tr>
<td>Swollen legs</td>
<td>Laparoscopic surgery (>45 min)</td>
</tr>
<tr>
<td>Varicose veins</td>
<td>Malignancy</td>
</tr>
<tr>
<td>Pregnancy or postpartum</td>
<td>Confined to bed (>72 h)</td>
</tr>
<tr>
<td>History of unexplained or recurrent spontaneous abortion</td>
<td>Immobilizing plaster cast</td>
</tr>
<tr>
<td>Oral contraceptives or hormone replacement</td>
<td>Central venous access</td>
</tr>
<tr>
<td>Sepsis (<1 mo)</td>
<td></td>
</tr>
<tr>
<td>Serious lung disease, including pneumonia (<1 mo)</td>
<td></td>
</tr>
<tr>
<td>Abnormal pulmonary function</td>
<td></td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure (<1 mo)</td>
<td></td>
</tr>
<tr>
<td>History of inflammatory bowel disease</td>
<td></td>
</tr>
<tr>
<td>Medical patient at bed rest</td>
<td></td>
</tr>
</tbody>
</table>

La recommandation **ACCP 2012 Non-surgical Prevention** mentionne les facteurs de risque suivants :
- antécédent de TEV
- opération ou traumatisme récent
- tumeur maligne évolutive
- grossesse
- prise d’estrogènes
- âge avancé
- mobilité réduite
- obésité sévère
- troubles thrombophiles connus.

Selon la recommandation NICE 2010, les patients ayant subi une chirurgie ou un traumatisme et présentant un risque accru de TEV répondent à l’un des critères suivants :
- intervention chirurgicale de plus de 90 minutes ou de plus de 60 minutes dans le cas d’une opération du bassin ou des membres inférieurs,
- opération aiguë secondaire à une affection inflammatoire ou intra-abdominale,
- réduction sévère attendue de la mobilité,
- un ou plusieurs facteurs de risque :
 - cancer évolutif ou traitement anticancéreux
 - âge supérieur à 60 ans
 - hospitalisation en soins intensifs
 - déshydratation
 - thrombophilie connue
 - IMC >30
 - une ou plusieurs comorbidités médicalement significatives (p. ex. cardiopathie, affections métaboliques, endocriniennes ou respiratoires, maladies infectieuses aiguës ou maladies inflammatoires)
 - antécédents personnels de TEV ou parent du premier degré présentant une TEV
 - hormonothérapie substitutive
 - contraception orale à base d’estrogènes
 - varices associées à une phlébite

Les patients médicaux ont un risque accru de TEV
- s’ils ont, ou auront, une mobilité réduite pendant 3 jours ou plus
- s’ils présentent une diminution persistante de leur degré de mobilité par rapport à leur état habituel, ainsi que 1 facteur de risque ou plus (voir facteurs de risque « chirurgie et traumatismes »)
3.4.2 Diagnostic de la TVP et de l'EP
Nous avons sélectionné les recommandations relatives au diagnostic formulées par l'ACCP 2012, le SIGN 2010 et le NICE 2012. Ces recommandations mentionnent les listes de scores suivantes destinées à évaluer la probabilité pré-test :

3.4.2.1 Scores de risque

Original three level Wells score or criteria for assessment of suspected DVT

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (treatment ongoing or within last six months or palliative)</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling >3 cm compared to other calf (measured 10 cm below tibial tuberosity)</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (non-varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Pitting oedema (greater in the symptomatic leg)</td>
<td>1</td>
</tr>
<tr>
<td>Swelling of entire leg 1</td>
<td>1</td>
</tr>
<tr>
<td>Localised tenderness along distribution of deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis, or recent plaster cast immobilisation of lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recently bedridden >3 days, or major surgery in past four weeks</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as DVT subtract 2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Interpretation: For evaluation (low v moderate v high)

- Score of 0 or less. low probability of deep vein thrombosis
- Score of 1 or 2 moderate probability of deep vein thrombosis.
- Score of 3 or higher high probability of deep vein thrombosis.

Revised two-level DVT Wells Score

<table>
<thead>
<tr>
<th>Clinical Feature</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (treatment ongoing, within 6 months, or palliative)</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis or recent plaster cast immobilisation of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recently bedridden for 3 days or more or major surgery within 12 weeks requiring general or regional anaesthesia</td>
<td>1</td>
</tr>
<tr>
<td>Localised tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Entire leg swollen</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling at least 3 cm larger than asymptomatic side</td>
<td>1</td>
</tr>
<tr>
<td>Clinical feature</td>
<td>Points</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Pitting oedema confined to the symptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (non-varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Previously documented DVT</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as DVT</td>
<td>-2</td>
</tr>
</tbody>
</table>

Clinical probability simplified score

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT ‘likely’</td>
<td>2 points or more</td>
</tr>
<tr>
<td>DVT ‘unlikely’</td>
<td>1 point or less</td>
</tr>
</tbody>
</table>

Two-level PE Wells score

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical signs and symptoms of DVT (minimum of leg swelling and pain with palpation of the deep veins)</td>
<td>3</td>
</tr>
<tr>
<td>An alternative diagnosis is less likely than PE</td>
<td>3</td>
</tr>
<tr>
<td>Heart rate greater than 100 beats per minute</td>
<td>1.5</td>
</tr>
<tr>
<td>Immobilisation (for more than 3 days) or surgery in the previous four weeks</td>
<td>1.5</td>
</tr>
<tr>
<td>Previous DVT/PE</td>
<td>1.5</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>1</td>
</tr>
<tr>
<td>Malignancy (on treatment, treated in the last 6 months, or palliative)</td>
<td>1</td>
</tr>
</tbody>
</table>

Clinical probability simplified score

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PE likely</td>
<td>More than 4 points</td>
</tr>
<tr>
<td>PE unlikely</td>
<td>4 points or less</td>
</tr>
</tbody>
</table>

Geneva score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>- 60-69 y</td>
<td>1</td>
</tr>
<tr>
<td>- >80 y</td>
<td>2</td>
</tr>
<tr>
<td>Previous DVT or PE</td>
<td>2</td>
</tr>
<tr>
<td>Recent surgery within four weeks</td>
<td>3</td>
</tr>
<tr>
<td>Heart rate >100 beats per minute</td>
<td>1</td>
</tr>
<tr>
<td>PaCO2 (partial pressure of CO2 in arterial blood):</td>
<td></td>
</tr>
<tr>
<td><35 mmHg</td>
<td>2</td>
</tr>
<tr>
<td>35-39 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>PaO2 (partial pressure of O2 in arterial blood):</td>
<td></td>
</tr>
<tr>
<td><49 mmHg</td>
<td>4</td>
</tr>
<tr>
<td>49-59 mmHg</td>
<td>3</td>
</tr>
<tr>
<td>60-71 mmHg</td>
<td>2</td>
</tr>
<tr>
<td>72-82 mmHg</td>
<td>1</td>
</tr>
<tr>
<td>Chest X-ray findings</td>
<td></td>
</tr>
<tr>
<td>- Band atelectasis</td>
<td>1</td>
</tr>
<tr>
<td>- Elevation of hemidiaphragm</td>
<td>1</td>
</tr>
</tbody>
</table>

The score obtained relates to probability of PE:

<table>
<thead>
<tr>
<th>Score</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 points</td>
<td>low probability (8%)</td>
</tr>
<tr>
<td>5-8 points</td>
<td>moderate probability (28%)</td>
</tr>
<tr>
<td>>8 points</td>
<td>high probability (74%)</td>
</tr>
</tbody>
</table>

Revised Geneva score:

The revised Geneva score uses eight parameters, but does not include figures which require an arterial blood gas sample to be performed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 65 years or over</td>
<td>1</td>
</tr>
<tr>
<td>Previous DVT or PE</td>
<td>3</td>
</tr>
<tr>
<td>Surgery or fracture within one month</td>
<td>2</td>
</tr>
<tr>
<td>Active malignant condition</td>
<td>2</td>
</tr>
<tr>
<td>Unilateral lower limb pain</td>
<td>3</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>2</td>
</tr>
<tr>
<td>Heart rate:</td>
<td></td>
</tr>
<tr>
<td>f75 to 94 beats per minute</td>
<td>3</td>
</tr>
<tr>
<td>f95 or more beats per minute</td>
<td>5</td>
</tr>
<tr>
<td>Pain on deep palpation of lower limb and unilateral oedema</td>
<td>4</td>
</tr>
</tbody>
</table>

The score obtained relates to probability of PE:

<table>
<thead>
<tr>
<th>Score</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 points</td>
<td>low probability (8%)</td>
</tr>
<tr>
<td>4-10 points</td>
<td>intermediate probability (28%)</td>
</tr>
<tr>
<td>11 points or more</td>
<td>high probability (74%)</td>
</tr>
</tbody>
</table>
NICE 2012
formule les recommandations suivantes pour le diagnostic de la thrombose veineuse profonde :

Patient with signs or symptoms of DVT

Other causes excluded by assessment of general medical history and physical examination

DVT suspected

Two-level DVT Wells score

DVT likely (≥ 2 points)

Is a proximal leg vein ultrasound scan available within 4 hours of being requested?

Yes

Proximal leg vein ultrasound scan

Was the proximal leg vein ultrasound scan positive?

Yes

D-dimer test

No

D-dimer test

Was the D-dimer test positive?

Yes

Interim 24-hour dose of parenteral anticoagulant

No

Proximal leg vein ultrasound scan within 24 hours of being requested

Was the proximal leg vein ultrasound scan positive?

Yes

D-dimer test

No

Was the repeat proximal leg vein ultrasound scan positive?

Yes

Diagnose DVT and treat

No

Repeat proximal leg vein ultrasound scan 6–8 days later

DVT unlikely (≤ 1 point)

D-dimer test

Was the D-dimer test positive?

Yes

Interim 24-hour dose of parenteral anticoagulant

No

Proximal leg vein ultrasound scan within 24 hours of being requested

Was the proximal leg vein ultrasound scan positive?

Yes

D-dimer test

No

Proximal leg vein ultrasound scan

Was the proximal leg vein ultrasound scan positive?

Yes

Interim 24-hour dose of parenteral anticoagulant

No

Diagnose DVT and treat

Advise the patient it is not likely they have DVT. Discuss with them the signs and symptoms of DVT, and when and where to seek further medical help. Take into consideration alternative diagnoses.
Et pour le diagnostic de l’embolie pulmonaire :

Patient with signs or symptoms of PE

Other causes excluded by assessment of general medical history, physical examination and chest X-ray

PE suspected

Two-level PE Wells score (see table 20)

PE likely (> 4 points)

Is CTPA* suitable** and available immediately?

Yes

Offer CTPA (or V/Q SPECT or planar scan)

Immediate interim parenteral anticoagulant therapy

CTPA (or V/Q SPECT or planar scan)

Was CTPA (or V/Q SPECT or planar scan) positive?

No

Is deep vein thrombosis suspected?

Yes

Consider a proximal leg vein ultrasound scan (see Diagnosis of deep vein thrombosis)

Advise the patient it is not likely they have PE.
Discuss with them the signs and symptoms of PE, and when and where to seek further medical help. Take into consideration alternative diagnoses.

Diagnose PE and treat

No

PE unlikely (≤ 4 points)

D-dimer test

Was the D-dimer test positive?

Yes

Immediate interim parenteral anticoagulant therapy

CTPA (or V/Q SPECT or planar scan)

Was the CTPA (or V/Q SPECT or planar scan) positive?

No

Offer CTPA (or V/Q SPECT or planar scan)

Is CTPA* suitable** and available immediately?

Yes

No

Advise the patient it is not likely they have PE.
Discuss with them the signs and symptoms of PE, and when and where to seek further medical help. Take into consideration alternative diagnoses.

*Computed tomography pulmonary angiogram

**For patients who have an allergy to contrast media, or who have renal impairment, or whose risk from irradiation is high, assess the suitability of V/Q SPECT or, if not available, V/Q planar scan, as an alternative to CTPA.

†Ventilation/perfusion single photon emission computed tomography
ACCP 2012 Diagnosis
recommande ce qui suit :
Chez les patients où l’on suspecte un premier épisode de TVP, évaluer le risque avant de réaliser un test diagnostique. Suivre les algorithmes pour les différents résultats de la « probabilité pré-test ».
L’ACCP reste toutefois vague concernant le test à utiliser. Elle mentionne à la fois le test de Wells original et le test de Wells modifié. La dernière version de Wells (« modified Wells ») est considérée comme insuffisamment validée dans de larges populations pour la recommander d’emblée. Les arbres décisionnels sont basés sur 3 niveaux de probabilité :

En cas de probabilité pré-test faible :

![Diagramme d'Algorithme]

Figure 1. [Section 3.2] Recommendations for evaluation of suspected first lower extremity DVT patients with low pretest probability (PTP) for DVT. Where there are preferred strategies, they are indicated by boldface print; less preferred strategies are indicated by italicized/delined. Venography is not generally indicated in the figure, as it is not routinely used. (See Kearon et al.) (Beginning with moderately sensitive D-dimer (Grade 2C) or highly sensitive D-dimer (Grade 2B) is suggested over beginning with US. Grade 1B vs no testing and vs venography. Grade 2B vs whole-leg US. *Grade 1B vs further testing. Grade 1B vs venography. Grade 2C vs whole-leg US. Grade 2C for treating DVT vs confirmatory venography. Grade 2B for high/moderate sensitivity D-dimer or proximal US over whole-leg US. *Grade 2C for proximal US over whole-leg US. PTP = pretest probability; US = ultrasound.
En cas de probabilité pré-test modérée :

En cas de probabilité pré-test élevée :
Si aucune stratification du risque n’est réalisée, l’ACCP 2012 Diagnosis recommande ce qui suit :

Figure 4. [Section 3.5] Recommendations for evaluation of suspected first lower extremity DVT: risk stratification not performed. Where there are preferred strategies, these are indicated by boldface print; less preferred strategies are indicated by italicizing/shading. §Use of D-dimer is suggested over use of repeat proximal US (Grade 2B) or whole-leg US (Grade 2C). ¶Grade 1B vs no testing and vs venography; Grade 2B vs D-dimer. ¶Grade 1B vs no further testing; Grade 2B vs venography. ¶Grade 1B vs no further testing; ¶Grade 1B vs venography. ¶Grade 2B for proximal US or whole-leg US over D-dimer. ¶Grade 2B for repeat proximal US, moderate or highly sensitive D-dimer, or whole-leg US over venography. ¶Grade 1B for treating DVT vs confirmatory venography. See Figure 1 legend for expansion of abbreviation.
Chez les patients où l'on suspecte une récidive de TVP, suivre les algorithmes en fonction des résultats du test diagnostique initial :

FIGURE 6. [Section 4.1] Recommendations for evaluation of suspected lower extremity recurrent DVT, proximal US as initial test. Where there are preferred strategies, these are indicated by boldface print; less preferred strategies are indicated by italicizing/shading. (See Kearon et al.1) *“Negative” refers to a normal US or an area of prior noncompressibility with a stable or decreased residual diameter or an interval increase in residual diameter of < 2 mm, #“Nondiagnostic” refers to a technically limited US, an area of prior noncompressibility with increase in residual venous diameter of < 4 mm but ≥ 2 mm, or an area of prior noncompressibility without prior measurement of residual diameter for comparison. &“Positive” refers to a new noncompressible segment or an area of prior noncompressibility with an interval increase in residual diameter of ≥ 4 mm. @Consider additional serial proximal US. *Grade 1B for treating DVT vs venography, CTV, or MR venography. *Grade 1B for treating DVT vs venography if new noncompressible segment in the common femoral or popliteal vein; Grade 2B for treating DVT vs venography for a ≥ 4-mm increase in venous diameter during compression compared with that in the same venous segment on a previous result. *Grade 2B for vs further testing and vs venography. *Grade 1B vs further testing with venography. *Grade 2B for at least one additional proximal US or moderate or highly sensitive D-dimer over venography. *Grade 2B for at least one additional proximal US or moderate or highly sensitive D-dimer over venography. *Grade 2B for at least one additional proximal US or moderate or highly sensitive D-dimer over venography. *Grade 1B for treating DVT over venography for new noncompressible segment compared to previous CUS result; Grade 2B for treating DVT over venography for a ≥ 4-mm increase in venous diameter during compression compared with that in the same venous segment on a previous result. *Grade 1B for proximal US (or highly sensitive D-dimer; see Figure 7) over venography, CTV, or MRI. CTV = CT scan venography; MR = magnetic resonance.
Figure 7. [Section 4.1] Recommendations for evaluation of suspected lower extremity recurrent DVT: highly sensitive D-dimer as initial test. Where there are preferred strategies, these are indicated by boldface print; less preferred strategies are indicated by italicizing/shading. See Keenan et al.11 E“Negative” refers to a normal US or an area of prior noncompressibility with a stable or decreased residual diameter on an interval increase in residual diameter of <2 mm. F“Nondiagnostic” refers to a technically limited US, an area of prior noncompressibility with increase in residual venous diameter of <4 mm but ≥ 2 mm, or an area of prior noncompressibility without prior measurement of residual diameter for comparison. G“Positive” refers to a new noncompressible segment or an area of prior noncompressibility with an interval increase in residual diameter of ≥ 4 mm. HConsider additional serial proximal US. 1Grade 1B vs venography, CTV, or MR venography; preferred initial assay if prior US not available for comparison. 2Grade 1B for treating DVT vs venography if new noncompressible segment in the common femoral or popliteal vein; Grade 2B for treating DVT vs venography for a ≥4-mm increase in venous diameter during compression compared with that in the same venous segment on a previous result. 3Grade 2B vs no further testing and vs venography; Grade 1B vs further testing with venography. 4Grade 2B for at least one additional proximal US over venography; Grade 2B for at least one additional proximal US over no further testing. 5Grade 1B for treating DVT over venography if new noncompressible segment in the common femoral or popliteal vein; Grade 2B for treating DVT over venography for a ≥4-mm increase in venous diameter during compression compared with that in the same venous segment on a previous result. 6Grade 1B for highly sensitive D-dimer (or proximal US; see Figure 6) over venography, CTV, or MRI. See Figure 1 and 6 legends for expansion of abbreviations.

Figure 9. [Section 4.3] Recommendations for evaluation of suspected lower extremity recurrent DVT evaluation following nondiagnostic proximal US and prior US result not available for comparison. Where there are preferred strategies, these are indicated by boldface print; less preferred strategies are indicated by italicizing/shading. See Keenan et al.11 Previous US with residual diameter measurements is not available for comparison. Current US is nondiagnostic (technically limited or only abnormality an area of prior noncompressibility). 1Grade 1B vs repeat proximal US in 1 week. 2Grade 3C vs repeat proximal US in 1 week. 3Grade 2C vs further testing with venography. 4Grade 2C vs treatment for DVT. 5Grade 2B for highly sensitive D-dimer (Grade 1B for venography) over repeat proximal US in 1 week. Grade 2C for venography over treatment for DVT. MRI: magnetic resonance imaging. See Figure 1 legend for expansion of other abbreviation.
Figure S. [Section 4.2] Recommendations for evaluation of suspected lower extremity recurrent DVT: evaluation following nondiagnostic proximal US and prior US result available for comparison. Where there are preferred strategies, these are indicated by boldface print; less preferred strategies are indicated by italicized/shading. †See Kearon et al. ††Previous US with residual diameter measurements is available for comparison. Current US is nondiagnostic (technically limited or only abnormality an area of prior noncompressibility with increase in residual venous diameter of < 4 mm but ≥ 2 mm). ‣“Negative” refers to a normal US or an area of prior noncompressibility with a stable or decreased residual diameter or an interval increase in residual diameter of < 2 mm. ‧“Positive” refers to a new noncompressible segment or an area of prior noncompressibility with an interval increase in residual diameter of ≥ 4 mm. †Grade 1B vs treating for DVT and vs alternative test strategies. ‡Grade 2B vs treating for DVT and vs alternative test strategies. ‡Grade 2B vs no further testing and vs venography. ‡Grade 1B vs further testing with venography. ‡Grade 1B for treating DVT vs venography if new noncompressible segment in the common femoral or popliteal vein. ‡Grade 2B for treating DVT vs venography for a ≥ 4-mm increase in venous diameter during compression compared with that in the same venous segment on a previous result. ‡Grade 2B for treating DVT over venography if a ≥ 4-mm increase in venous diameter during compression compared with that in the same venous segment on a previous result (Grade 1B for treating DVT over venography if new noncompressible segment in the common femoral or popliteal vein). ‡Grade 2B for repeat proximal US in 1 week or moderate or highly sensitive D-dimer over treating for DVT (Grade 1B for venography over treating for DVT). See Figure 1 legend for expansion of abbreviation.
SIGN 2010
formule également un plan par étapes pour le diagnostic de la TVP et de l’EP.
Les algorithmes diagnostiques proposés par le SIGN (la révision de cette partie de la recommandation date de 2011) en cas de suspicion d’embolie pulmonaire se basent sur le ‘revised Geneva score’. Le score de Wells est le plus utilisé tant pour la TVP que pour l’EP.

The Wells score, in either its 3 level (low, moderate or high) or 2 level (likely or unlikely) format, the Geneva or revised Geneva score in its 3 level format, or the Wells rule for PE in its 2 or 3 level format can be used to assess the clinical probability of a diagnosis of venous thromboembolism. In all cases it is important to follow the chosen protocol precisely and to apply it only to those patients and situations for which it has been validated.

In patients with a first episode of VTE, the combination of a low probability CDR or ‘DVT or PE unlikely’ and a negative D-dimer test can be used to exclude a diagnosis of VTE.

Patients with high clinical probability or ‘DVT or PE likely’ should not have D-dimer performed prior to imaging as it is of no value in the diagnostic process for this group.

Patients with high clinical probability or ‘DVT or PE likely’ should proceed to imaging to confirm or exclude VTE.

Patients with low or moderate probability CDR or ‘DVT or PE unlikely’ but a positive D-dimer test should proceed to imaging to confirm or exclude a diagnosis of VTE.

Patients assessed as low or ‘unlikely’ clinical probability and with a negative D-dimer should be informed that a diagnosis of VTE may become apparent during three months of follow up.

Patients who re-present with ongoing symptoms which are not otherwise explained should be re-assessed using the same clinical process as used in the initial assessment.

Les recommandations suivantes sont formulées dans la recommandation SIGN en vue de confirmer la suspicion clinique de thrombose veineuse profonde et d’embolie pulmonaire, respectivement :

- L’échographie veineuse est l’imagerie de premier choix chez les patients présentant une suspicion de TVP.
• Les patients qui ont reçu une évaluation négative ou non concluante lors de la première échographie, mais qui présentent des symptômes persistants de TVP doivent passer une nouvelle échographie.

• L’angiographie par tomodensitométrie est l'imagerie de premier choix chez les patients où l’on suspecte une EP.

• Lors de l'interprétation de l'angiographie par tomodensitométrie, le rapport ventricule droit/ventricule gauche doit être considéré comme un indicateur de sévérité.

• La scintigraphie pulmonaire isotopique peut offrir une alternative lorsque l'angiographie par tomodensitométrie n'est pas disponible et que le patient est cliniquement stable. Cette imagerie a prouvé son utilité, surtout chez les patients obtenant une radiographie thoracique normale sans pathologie pulmonaire sous-jacente, chez les patients ayant une contre-indication pour une tomodensitométrie des vaisseaux pulmonaires ou chez les patientes enceintes ayant une radiographie thoracique normale.
3.4.3 Traitement de la TVP et de l'EP

ACCP 2012 Therapy
Instaurer le traitement par une anticoagulation parentérale (HBPM ou fondaparinux plutôt qu’une HNF) et un antagoniste de la vitamine K (AVK) dès que possible (éventuellement en concomitance). Administer une anticoagulation parentérale pendant au moins 5 jours et jusqu’à ce que l’INR persiste au-delà de 2 pendant au moins 24 h. INR cible = 2-3. Si l’on n’opte pas pour un AVK, l’ACCP recommande une HBPM plutôt que le dabigatran ou le rivaroxaban.

Chez les patients cancéreux, le traitement à long terme de premier choix est l’HBPM plutôt que l’AVK.

La thrombolyse n’est pratiquée que dans certains cas spécifiques.

Localisation du traitement : le traitement à domicile est l’option préférentielle pour la TVP et la sortie précoce de l’hôpital l’option de choix pour l’EP.

Durée du traitement :
- traiter de préférence pendant 3 mois
 o si la TEV est secondaire à une chirurgie ou à un facteur de risque transitoire non chirurgical
 o en cas de première ou de deuxième TVP ou EP proximale non provoquée et de risque hémorragique élevé
- traiter au moins 3 mois et donner la préférence à un traitement prolongé (maintenu à long terme, avec réévaluation périodique) :
 o en cas de première ou de deuxième TVP ou EP proximale non provoquée et de risque hémorragique faible à modéré
 o chez les patients cancéreux avec TEV, quel que soit le risque hémorragique

Il est conseillé de porter des bas de compression graduée pendant 2 ans en cas de TVP symptomatique aiguë ; ces bas peuvent aussi être essayés chez les patients qui présentent un syndrome post-thrombotique.

ISTH 2013
Cette recommandation concerne uniquement les patients cancéreux. L’administration d’une HBPM pendant au moins 3 mois est le traitement de premier choix, et sera préférée à un AVK. Le fondaparinux et l’HNF peuvent constituer des options alternatives. La thrombolyse n’est pratiquée que dans certains cas spécifiques. L’idaraparinux (non disponible en Belgique) est déconseillé.

Au bout de 3 à 6 mois, il faut décider pour chaque patient individuel si l’on poursuit le traitement par HBPM ou par AVK sur base d’une analyse coûts/bénéfices, de l’observance thérapeutique, de la préférence du patient et du statut du cancer.

En cas de récidive de TEV, trois options sont disponibles : en cas de traitement par HBPM, passer à un AVK, et inversement ; ou placer un filtre cave.

NICE 2012
En cas de TVP ou d’EP proximale, on instaura le plus rapidement possible une HBPM ou du fondaparinux pendant au moins cinq jours ou jusqu’à ce que sous AVK, l’INR persiste au-delà de 2 pendant au moins 24 h. Lors du choix du traitement, tenir compte des comorbidités, des contreindications et du prix du médicament. Il existe toutefois des exceptions. En cas d’insuffisance rénale sévère ou de défaillance rénale : administrer une HNF ou une HBPM en adaptant la dose. En cas de risque hémorragique accru : administrer une HNF. Administrer également une HNF chez les patients atteints d’embolie pulmonaire et instables sur le plan hémodynamique ; si nécessaire, administrer ensuite une thrombolyse.

L’AVK est administré pendant au moins trois mois et jusqu’à six mois si les patients présentent un risque élevé de récidive de TEV mais pas de risque hémorragique accru. Ceci est à discuter avec le patient.

Les patients cancéreux atteints d’une TVP ou d’un EP proximale doivent être traités pendant six mois par HBPM, puis réévalués avant de prolonger le traitement.
Le port des bas de compression graduée est conseillé chez les patients atteints d'une TVP du membre inférieur une semaine après le diagnostic ou lorsque le gonflement a suffisamment diminué, pour autant qu'il n'y ait pas de contre-indications.

SIGN 2010

Comme traitement initial, il est recommandé, dans l'EP comme dans la TVP du membre inférieur, d'instaurer dès que possible une HBPM ou du fondaparinux, dès le moment où il existe une suspicion de TVP, jusqu'à ce que l'INR sous VKA soit ≥2 ; ensuite, poursuivre le traitement pendant au moins cinq jours.

La thrombolyse n'est pas pratiquée en routine en cas d'embolie pulmonaire. Les patients atteints d'EP présentant un faible risque peuvent être traités en ambulatoire.

Dans certaines circonstances, l'HNF peut offrir une alternative chez les patients ayant une TVP, par exemple lorsqu'une thrombolyse est envisagée, immédiatement après une intervention ou en cas de risque hémorragique.

Les patients cancéreux atteints d'une TEV seront de préférence traités par une HBPM plutôt que par AVK, et ce pendant trois à six mois. Ensuite, le patient sera réévalué pour décider si le traitement doit être poursuivi ou arrêté.

En règle générale, il convient de traiter pendant au moins trois mois par AVK après une TEV, ou éventuellement plus longtemps dans certains cas, en fonction du facteur ayant déclenché le premier épisode de TEV, de la localisation et de la sévérité de la TEV, de la présence d'une comorbidité persistante (p. ex. cancer) ou d'anticorps antiphospholipidiques, du sexe du patient, de son observance thérapeutique et de son risque hémorragique.

Pour prévenir le syndrome post-phlébite, il est recommandé aux patients atteints d'une TVP du membre inférieur de porter des bas de compression graduée pendant deux ans.

Conclusions :

Toutes les recommandations sélectionnées donnent la préférence aux HBPM pour le traitement de la thromboembolie veineuse. Le fondaparinux est considéré comme une option équivalente par le NICE 2012 et le SIGN 2010. L'héparine non fractionnée et la thrombolyse sont des alternatives envisageables dans certains cas.

Chez les patients cancéreux présentant une TEV, les HBPM représentent dans tous les cas le premier choix - préférable aux AVK - dans le traitement prolongé, à savoir sur une période d'au moins trois mois (ISTH 2013) ou six mois (NICE 2012). SIGN 2010 mentionne une période de trois à six mois, suivie d'une réévaluation du rapport coûts/bénéfices. La recommandation ACCP 2012 Therapy mentionne un traitement prolongé (‘extended therapy’) incluant une évaluation périodique.

Les recommandations sélectionnées préconisent de maintenir le traitement pendant **au moins trois mois**. NICE 2012 recommande de traiter pendant une période supplémentaire de trois mois les patients à risque élevé de récidive de TEV sans risque hémorragique accru ; de même, l'ACCP 2012 Therapy et le SIGN 2010 indiquent qu'un traitement prolongé peut être envisagé ou constitue le traitement de choix chez certains patients selon le facteur de déclenchement, la localisation et la sévérité du premier épisode de TEV et d'autres facteurs de risque. La poursuite du traitement s'effectuera de préférence en concertation avec le patient.
3.4.4 Prévention de la TEV en post-opératoire ou en cas d'immobilisation

3.4.4.1 Chirurgie orthopédique majeure

L'ACCP 2012 Orthopedic Prevention concerne les recommandations pour la prévention de la thromboembolie veineuse chez des patients qui subissent une arthroplastie totale de la hanche ou du genou ou qui sont opérés pour des fractures de la hanche.

Il est fortement recommandé d'appliquer pendant 10 à 14 jours minimum une compression pneumatique intermittente ou une forme de thromboprophylaxie pharmacologique: HBPM, fondaparinux, apixaban, dabigatran, rivaroxaban, héparine non fractionnée faiblement dosée, antagoniste de la vitamine K ou aspirine. Le moment d'administration recommandé est au plus tard 12 h avant l'intervention ou au moins 12 h après l'intervention. La thromboprophylaxie pharmacologique prendra de préférence la forme d'une HBPM. L'ACCP 2012 recommande en outre de prolonger la durée de la prophylaxie jusqu'à 35 jours, même si le patient est sorti de l'hôpital entre-temps. Durant l'hospitalisation, la préférence est accordée à une double prophylaxie (mécanique + pharmacologique), sauf si le patient présente un risque hémorragique élevé. Il n'est pas nécessaire de pratiquer un dépistage systématique de tous les patients postopératoires avant leur retour au domicile.

Les recommandations de NICE 2010 sont similaires. Chez les patients qui subissent une arthroplastie élective du genou ou de la hanche ou qui subissent une opération pour fracture de la hanche, on recommande une thromboprophylaxie combinée, mécanique et pharmacologique. Instaurer une prophylaxie mécanique dès l'arrivée à l'hôpital : bas de compression élastiques, pompes plantaires à impulsions veineuses ou compression pneumatique intermittente. Continuer à administrer cette prophylaxie jusqu'à ce que le patient soit de nouveau mobile. Instaurer la thromboprophylaxie pharmacologique après l'opération : dabigatran (1-4 h post-opératoire), fondaparinux (6 h post-opératoire si l’hémostase a été atteinte), HBPM (6-12 h post-opératoire), rivaroxaban (6-10 h post-opératoire) ou HNF (chez les patients avec insuffisance rénale, 6-12 h post-opératoire). Pour une chirurgie secondaire à une fracture de la hanche, une autre option est proposée : ne pas administrer de fondaparinux en pré-opératoire (arrêter 24 h avant l'intervention) et ne réinstaller que 6 heures après l'intervention, arrêter l'HBPM 12 heures avant l'opération et la réadministrer 6 à 12 heures après l'opération, arrêter également l'héparine non fractionnée (chez les patients insuffisants rénaux) 12 h avant l'opération et la réadministrer 6 à 12 heures après l'intervention.

La durée de la prophylaxie pharmacologique dépend du type de chirurgie: pour la chirurgie de la hanche, on recommande une période de 28 à 35 jours, et une période de 10 à 14 jours pour la prothèse du genou.

En tenant compte de l'évaluation des risques et de la discussion avec le patient, envisager une prophylaxie double chez les patients qui subissent une autre forme de chirurgie orthopédique.

Selon SIGN 2010, tous les patients qui bénéficient d'une prothèse totale du genou ou de la hanche doivent recevoir à la fois une thromboprophylaxie pharmacologique (à base d'HBPM, de fondaparinux, de rivaroxaban ou de dabigatran) et une thromboprophylaxie mécanique, sauf en cas de contre-indication. Quant à la durée du traitement, il est seulement fait référence à une «prophylaxie prolongée», sans mention d’un nombre concret de semaines ou de mois.

Conclusions

Toutes les recommandations (ACCP 2012 Orthopedic Prevention, NICE 2010 et SIGN 2010) accordent la préférence à une **thromboprophylaxie double prolongée (mécanique + pharmacologique)** pour les patients qui subissent une chirurgie orthopédique majeure.

Selon l'ACCP 2012, l’HBPM constitue le premier choix dans la prophylaxie pharmacologique, par rapport au fondaparinux, à l’apixaban, au dabigatran, au rivaroxaban, à l’héparine non fractionnée, aux AVK ou à l’aspirine ; cette prophylaxie pharmacologique sera administrée soit au moins 12
heures avant l’opération, soit 12 heures après l’opération, et ce pendant une période d’au moins 10 à 14 jours, mais de préférence pendant 35 jours.

Le NICE 2010 ne formule aucune préférence entre l’HBPM, le fondaparinux, le dabigatran, le rivaroxaban et l’héparine non fractionnée. Cette recommandation préconise d’instaurer immédiatement une thromboprophylaxie mécanique et de n’administrer une prophylaxie pharmacologique qu’après l’intervention. Pour la chirurgie de la hanche, la thromboprophylaxie sera maintenue de préférence pendant 28 à 35 jours, contre 10 à 14 jours pour la chirurgie du genou. Dans les autres formes de chirurgie orthopédique, il est recommandé de procéder à une évaluation des risques avant d’instaurer la thromboprophylaxie.

SIGN 2010 s’associe à cette recommandation précédente en accordant la préférence à une thromboprophylaxie mécanique et pharmacologique combinée, sans toutefois préciser de produits ou de durée de traitement.

3.4.4.2 Autres chirurgies majeures (non orthopédique, non oncologique)

L’ACCP 2012 Surgical Prevention traite des recommandations pour les patients qui subissent une intervention non orthopédique. Il s’agit ici de chirurgie générale, pelvienne/abdominale, bariatrique, vasculaire et esthétique.

Les patients sont tout d’abord divisés en groupes en fonction de leur risque (sur la base des scores de Rogers et de Caprini).

Chez les patients présentant un très faible risque de TEV (<0,5 %), il n’est pas nécessaire d’administrer une thromboprophylaxie pharmacologique ou mécanique ; il faut seulement veiller à ce que le patient redevienne mobile le plus rapidement possible.

Pour les patients avec faible risque de TEV (environ 1,5 %), l’ACCP propose une prophylaxie mécanique, de préférence par une compression pneumatique intermittente.

En cas de risque modéré de TEV (3,0 %), il est recommandé d’administrer soit une HBPM ou une héparine non fractionnée faiblement dosée, soit une compression pneumatique intermittente.

Les patients avec un risque élevé de TEV (environ 6 %) et un faible risque de saignements doivent recevoir d’une part une HBPM ou une héparine non fractionnée, et d’autre part des bas de compression élastiques ou une compression pneumatique intermittente pour prévenir la thromboembolie veineuse.

NICE 2010 formule des recommandations quasi identiques pour les chirurgies gastro-intestinale, gynécologique, urologique, laparoscopique et thoracique. Ils recommandent, chez les patients à risque de TEV (voir rubrique ‘facteurs de risque’), d’administrer d’emblée une thromboprophylaxie mécanique : bas de compression élastiques, pompes plantaires à impulsions veineuses ou compression pneumatique intermittente. Si les patients ont un risque hémorragique faible, une thromboprophylaxie pharmacologique peut y être ajoutée. Pour toutes les formes de chirurgie générale, à l’exception de la chirurgie urologique, gynécologique ou thoracique, il est conseillé de traiter par fondaparinux, HBPM ou héparine non fractionnée (pour les patients insuffisants rénaux), et ce, jusqu’à ce que le patient soit suffisamment mobile (ce qui nécessite généralement un délai de 5 à 7 jours). L’administration de fondaparinux est déconseillée dans la chirurgie urologique, gynécologique ou thoracique.

Le SIGN 2010 recommande d’administrer une thromboprophylaxie par des méthodes mécaniques à tous les patients qui subissent une chirurgie abdominale et présentent un risque de TEV du fait de l’intervention ou de facteurs personnels, sauf en cas de contre-indication. Le SIGN 2010 recommande également l’administration d’une prophylaxie pharmacologique par HBPM, héparine non fractionnée ou fondaparinux.

Conclusions :
Toutes les recommandations (ACCP 2012, NICE 2010 et SIGN 2010) préconisent de réaliser d'abord une évaluation du risque pour déterminer si un traitement prophylactique de la thromboembolie veineuse s'avère nécessaire. Selon cette évaluation du risque, l'ACCP 2012 recommande de ne pas instaurer de thromboprophylaxie (en cas de risque très faible), d'instaurer uniquement une prophylaxie mécanique (en cas de risque faible), d'administrer une prophylaxie mécanique ou pharmacologique (en cas de risque modéré) ou d'administrer une double thromboprophylaxie (risque élevé). Les traitements prophylactiques proposés sont l'HBPM ou l'héparine non fractionnée d'une part, et les bas de compression élastiques et la compression pneumatique intermittente d'autre part. En cas de risque hémorragique élevé, on instaura d'abord une thromboprophylaxie mécanique, éventuellement suivie d'une prophylaxie pharmacologique si le risque hémorragique est écarté. En cas de risque accru de TEV, le NICE 2010 recommande une prophylaxie mécanique associée à une prophylaxie pharmacologique si le risque hémorragique est faible. Les options pharmacologiques sont l'HBPM, l'héparine non fractionnée ou le fondaparinux (sauf en cas de chirurgie urologique/gynécologique ou thoracique). Le SIGN 2010 considère la thromboprophylaxie double comme indispensable dans toutes les interventions abdominales associées à un risque de TEV. Outre les mesures mécaniques, l'HBPM, l'héparine non fractionnée et le fondaparinux font partie de la prophylaxie pharmacologique. Les recommandations ne mentionnent pas de durée de traitement, sauf le NICE 2010, qui recommande d’arrêter la thromboprophylaxie lorsque le patient est à nouveau mobile - un objectif généralement atteint dans les 5 à 7 jours.

3.4.4.3 Arthroscopie du genou
L'ACCP 2012 Orthopedic Prevention ne recommande aucune thromboprophylaxie chez les patients sans antécédents de TEV qui subissent une arthroscopie du genou.

3.4.4.4 Immobilisation avec plâtre
ACCP 2012 Orthopedic Prevention ne recommande aucune thromboprophylaxie chez les patients présentant des lésions isolées de la jambe (distales du genou) nécessitant une immobilisation. Le NICE 2010 recommande de procéder d'abord à une évaluation du risque pour décider si le patient a besoin d'une thromboprophylaxie. Le cas échéant, on peut administrer une HBPM ou une héparine non fractionnée jusqu'au retrait du plâtre de la jambe.

3.4.4.5 Patient médical
La recommandation ACCP 2012 Non-surgical Prevention traite de la prévention de la thromboembolie veineuse chez les patients hospitalisés pour affection aiguë. Si ces patients présentent un risque thrombotique accru, il est fortement recommandé d'instaurer une thromboprophylaxie à base d'HBPM, d'héparine non fractionnée ou de fondaparinux. Le choix de l'anticoagulant dépend de la préférence du patient, de l'observance thérapeutique, des possibilités d'administration pratiques et du prix du produit pharmacologique. Si ces patients présentent des saignements aigus ou un risque hémorragique sévère, on instaura d'abord une prophylaxie mécanique (bas de compression élastiques ou compression pneumatique intermittente) jusqu'à ce que le risque hémorragique soit écarté. La thromboprophylaxie pharmacologique est déconseillée chez les patients hospitalisés présentant un faible risque thrombotique. Les patients hospitalisés qui reçoivent initialement une thromboprophylaxie à l'hôpital ne doivent pas la poursuivre à leur retour à domicile ou après la fin de l'immobilisation. ACP 2011 conseille fortement d'évaluer le risque de thromboembolie veineuse et d'hémorragies chez les patients hospitalisés avant d'instaurer un traitement préventif. Si les bénéfices l'emportent sur les inconvénients, la prophylaxie pharmacologique à base d'héparine ou de produits apparentés est recommandée, mais pas la prophylaxie mécanique avec des bas de compression élastiques.
Le **NICE 2010** recommande uniquement une thromboprophylaxie pharmacologique chez les patients qui présentent un risque accru de thrombembolie veineuse. Les options envisageables sont le fondaparinux, l’HBPM et l’HNF. La thromboprophylaxie mécanique (bas de compression élastiques, pompes plantaires à impulsions veineuses ou compression pneumatique intermittente) n’est recommandée qu’en cas de contre-indication à la thromboprophylaxie pharmacologique. Chez les patients ayant subi un accident vasculaire cérébral, il convient d’exclure toute hémorragie cérébrale et de s’assurer que le risque hémorragique est faible avant d’administrer une prophylaxie par héparine. Une thromboprophylaxie n’est nécessaire que si le patient présente un ou plusieurs facteurs de risque de TEV, tels qu’une limitation sévère de la mobilité, des antécédents de TEV, une déshydratation et/ou une comorbidité. Lorsqu’une thromboprophylaxie pharmacologique n’est pas (encore) envisageable, une thromboprophylaxie mécanique par compression pneumatique intermittente ou par des dispositifs envoyant des impulsions vers la plante des pieds peut être proposée ; le port des bas de compression élastiques est déconseillé chez les patients ayant subi un accident vasculaire cérébral.

Le **SIGN 2010** préconise également une évaluation du risque et, s’il s’avère préférable d’administrer une thromboprophylaxie aux patients médicaux, le choix portera sur l’héparine non fractionnée, l’HBPM ou le fondaparinux.

Conclusions

Seuls les patients médicaux avec **risque accru** de thromboembolie veineuse **sans saignement aigu** doivent recevoir une prophylaxie pharmacologique sous forme d’HBPM, d’héparine non fractionnée ou de fondaparinux (ACCP 2012, ACP 2011, NICE 2010, SIGN 2010). L’ACP 2011 ne mentionne pas le fondaparinux comme une option de prophylaxie pharmacologique. Le NICE 2010 met en garde contre le port des bas de compression élastiques chez les patients ayant subi un accident vasculaire cérébral et recommande de contrôler tout signe d’hémorragie cérébrale ou d’autres hémorragies aiguës avant d’administrer une thromboprophylaxie pharmacologique.

3.4.4.6 Voyages de longue distance

Les seules recommandations formulant des conseils à l’attention des voyageurs parcourant de longues distances sont l’**ACCP 2012 Non-surgical Prevention** et le **SIGN 2010**.

La première recommandation déconseille l’utilisation d’aspirine, d’anticoagulants ou de bas de compression élastiques en prévention de la TEV lors des voyages de longue distance, sauf si le voyageur présente un risque thrombotique accru. Dans ce cas, le voyageur doit se mouvoir fréquemment, pratiquer des exercices pour les muscles du mollet et, si possible, s’asseoir côté couloir dans l’avion pendant les vols de longue distance. Les voyageurs avec un risque accru de TEV peuvent aussi porter des bas de compression élastiques (bas de genou fournissant une pression de 15 à 30 mmHg autour des chevilles) durant le voyage. Selon le **SIGN 2010**, les coûts et bénéfices d’une éventuelle prophylaxie de la TEV doivent toujours être discutés avec la personne concernée avant le voyage. Il est conseillé aux voyageurs de bouger le plus possible avant, pendant et après le voyage. Il est conseillé de pratiquer des exercices stimulant les muscles des jambes. Le port de bas de compression élastiques n’est pas recommandé en routine. Si ces bas sont portés, ils doivent être parfaitement adaptés.

Chez les voyageurs à haut risque de thromboembolie veineuse, on peut envisager une thromboprophylaxie pharmacologique sous forme d’une HBPM.

3.4.4.7 Prévention de la TEV dans le cancer

Chirurgie oncologique

La recommandation **ISTH 2013** traite du traitement et de la prévention de la thromboembolie veïneuse chez les patients cancéreux.

L’administration d’injections quotidiennes d’HBPM ou d’héparine non fractionnée trois fois par jour.
est fortement recommandée en prévention de la TEV chez les patients cancéreux subissant une
opération. La prophylaxie pharmacologique doit être instaurée dans un délai de 12 à 2 heures
périorant l’intervention, et sera maintenue pendant au moins 7 à 10 jours. Aucune donnée n’indique
que le fondaparinux est une alternative adéquate à l’HBPM, ou qu’un type d’HBPM serait meilleur
qu’un autre.
Une thromboprophylaxie prolongée (4 semaines) peut s’avérer nécessaire chez les patients
cancéreux qui présentent un risque élevé de TEV et subissent une chirurgie abdominale majeure. La
thromboprophylaxie mécanique est déconseillée en tant que monothérapie, sauf lorsque la
thromboprophylaxie pharmacologique est contre-indiquée.

Oncologie non chirurgicale

L’*ISTH 2013* recommande de traiter les patients cancéreux hospitalisés et à mobilité réduite par une
HBPM, une HNF ou le fondaparinux.
La thromboprophylaxie n’est pas indiquée en routine chez les patients qui reçoivent une
chimiothérapie. Une thromboprophylaxie pharmacologique primaire peut être indiquée chez les
patients atteints d’un cancer localement avancé ou métastatique du pancréas ou du poumon et
traités par chimiothérapie, pour autant que leur risque hémorragique soit faible.
Une prophylaxie de la TEV est indiquée par contre chez les patients traités par thalidomide ou
lénalidomide en association avec des stéroïdes et/ou une chimiothérapie. Dans ces cas, les AVK, les
HBPM ou l’aspirine faiblement dosée ont des effets similaires.

L’*ACCP 2012 Non-surgical Prevention* déconseille la thromboprophylaxie (par HBPM, HNF ou AVK)
chez les patients cancéreux qui ne séjournent pas en milieu hospitalier - même s’ils sont porteurs de
cathéters veineux centraux - et ne présentent pas de facteurs de risque supplémentaires de TEV. Les
facteurs de risque supplémentaires incluent par exemple des antécédents de thrombose veineuse,
une immobilisation ou une hormonothérapie, la prise d’inhibiteurs de l’angiogenèse, de thalidomide
ou de lénalidomide. En revanche, l’administration préventive d’une HBPM ou d’une HNF est
conseillée chez les patients ambulatoires ayant des tumeurs solides et des facteurs de risque
supplémentaires pour la thromboembolie veineuse, mais présentant un faible risque d’hémorragies.
De même, le NICE 2010 déconseille de proposer une thromboprophylaxie pharmacologique ou
mécanique en routine aux patients cancéreux ambulatoires. Une thromboprophylaxie (fondaparinux,
HBPM ou héparine non fractionnée) ne sera administrée qu’aux patients cancéreux avec risque accru
de TEV.
Le SIGN 2010 considère que le risque de thromboembolie veineuse est généralement élevé chez les
patients cancéreux, et recommande donc un traitement prophylactique par HBPM, héparine non
fractionnée ou fondaparinux durant l’hospitalisation.

Conclusions

D’après les recommandations (ISTH 2013, ACCP 2012, NICE 2010, SIGN 2010), les **patients cancéreux**
qui ne sont pas opérés et ne présentent **pas d’autres facteurs de risque supplémentaires** de
thromboembolie veineuse ne doivent **pas recevoir de traitement prophylactique en routine**. Le
SIGN 2010 recommande en revanche une thromboprophylaxie chez les patients cancéreux durant
l’hospitalisation. Lorsqu’une thromboprophylaxie est administrée aux patients cancéreux, les HBPM
et l’héparine non fractionnée constituent les options de premier choix.
4 Résumé des résultats: Traitement des thromboembolies veineuses
4.1 Traitement initial de la thromboembolie veineuse

4.1.1 Anticoagulation versus placebo dans le traitement initial

Peu d’études comparent un traitement actif à un placebo chez des patients présentant une TEV. Toutes les études disponibles ont été passées en revue lors de la recherche de la littérature réalisée dans le cadre de la précédente conférence de consensus sur la TEV. Parmi ces études, toutes ne satisfont pas à nos critères d’inclusion actuels (nombres limitées).

4.1.2 Anticoagulation versus anticoagulation dans le traitement initial

Nous n’avons pu inclure aucune étude comparant différents traitements actifs dans la phase de traitement initial uniquement. Les études existantes comparent l’HBPM avec l’HNF ou avec le fondaparinux, ce qui ne constituait pas une question de recherche pour cette revue. Quelques études comparent des traitements à la fois dans leur phase initiale et dans leur phase d’entretien. Ces études sont présentées au chapitre suivant. La plupart des études comparent différents traitements dans la phase d'entretien du traitement, après un traitement initial (habituel) de 5 à 14 jours.

4.1.3 Durée du traitement initial

Aucune étude n’a été identifiée.
4.2 Traitement initial et poursuite du traitement afin de prévenir les récidives de thromboembolies

4.2.1 Nouveaux anticoagulants versus traitement standard

4.2.1.1 Rivaroxaban versus énoxaparine suivie d’un antagoniste de la vitamine K chez les patients ayant une TEV

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Relative effect (95% CI)</th>
<th>Absolute effect</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>8281 (2 studies) 3, 6 or 12m</td>
<td>Einstein 2010 (DVT patients) 2.2% vs 2.9% HR: 0.67 (95% CI 0.44 to 1.02)</td>
<td></td>
<td>⊕⊕⊕⊝ MODERATE Study quality: -1 open label, noninferiority design Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einstein PE 2012 (PE patients) 2.4% vs 2.1% HR=1.13 (95%CI 0.77 to 1.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic recurrent VTE (PO)</td>
<td>8281 (2 studies) 3, 6 or 12m</td>
<td>Einstein 2010 (DVT patients) 2.1% vs 3.0% HR: 0.68 (95 % CI 0.44 to 1.04); SS, p<0.001 for noninferiority</td>
<td></td>
<td>⊕⊕⊕MODERATE Study quality: -1 open label, unclear noninferiority reporting Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einstein PE 2012 (PE patients) 2.1% vs 1.8% HR= 1.12 (95% CI 0.75 to 1.68) SS, p=0.003 for noninferiority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major or clinically relevant nonmajorbleeding (PO)</td>
<td>8281 (2 studies) 3, 6 or 12m</td>
<td>Einstein 2010 (DVT patients) 8.1% vs 8.1% HR: 0.97 (95% CI 0.76 to 1.22)</td>
<td></td>
<td>⊕⊕⊕MODERATE Study quality: -1 Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einstein PE 2012 (PE patients) 10.3% vs 11.4% HR= 0.90 (95% CI 0.76 to 1.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any major bleeding</td>
<td>8281 (2 studies) 3, 6 or 12m</td>
<td>Einstein 2010 (DVT patients) 0.8% vs 1.2% HR: 0.65 (95% CI 0.33 to 1.30)</td>
<td></td>
<td>⊕⊕⊕LOW Study quality: -1 Consistency: -1 Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einstein PE 2012 (PE patients) 1.1% vs 2.2% HR: 0.49 (95% CI 0.31 to 0.79) SS in favour of rivaroxaban</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deux RCT comparent le rivaroxaban oral au traitement standard par énoxaparine suivi d'une dose ajustée d'antagonistes de la vitamine K dans le traitement de la TEV symptomatique. La première étude (Einstein DVT 2010) inclut uniquement des patients présentant une TVP symptomatique (à l'exclusion de l'EP symptomatique), la seconde étude (Einstein PE 2012) inclut des patients présentant une EP symptomatique (avec ou sans TVP). Dans l’étude Einstein DVT, environ 72% des patients avaient reçu un traitement d’un ou deux jours par HBPM, héparine ou fondaparinux avant d’être randomisés. Dans l’étude Einstein PE, environ 92% des patients avaient eu un tel traitement pré-randomisation d’un à deux jours. Cela signifie que nous ne disposons pas de données suffisantes quant à l’efficacité du rivaroxaban par rapport à l’énoxaparine lors des 24 à 48 premières heures de traitement. La durée du traitement était de 3, 6 ou 12 mois, déterminée par le médecin traitant avant la randomisation.

Les deux études étaient des essais de non-infériorité.

Aucune différence significative de mortalité n’a été observée entre les deux schémas thérapeutiques.

GRADE: MODERATE quality of evidence

Le rivaroxaban est non inférieur au traitement standard par énoxaparine et AVK dans la prévention de la TEV récidivante symptomatique.

GRADE: MODERATE quality of evidence

Aucune différence significative du nombre total de saignements majeurs ou non majeurs cliniquement significatifs n’a été observée entre les deux groupes de traitement.

GRADE: MODERATE quality of evidence

Chez les patients atteints d’EP, le nombre de saignements majeurs est significativement moindre avec le rivaroxaban qu’avec le traitement standard. Chez les patients présentant une TVP, cette différence n’est pas significative.

GRADE: LOW quality of evidence
4.2.1.2 Apixaban versus énoxaparin suivie d’un antagoniste de la vitamine K dans la TEV symptomatique

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
</table>
| **Mortality** | 5395 (1 study) 6m | Apixaban: 1.5%
Enox+warf: 1.9%
RR=0.79 (0.53 to 1.19)
NS | ⊕⊕⊕⊕ HIGH
Study quality:OK, but unclear allocation concealment and assessor blinding
Consistency:NA
Directness:OK
Imprecision:OK |
| **Recurrent symptomatic VTE or death related to VTE (PO)** | 5395 (1 study) 6m | 2.3% vs 2.7%
RR= 0.84 (0.60 to 1.18),
p-value for non-inferiority < 0.001 | ⊕⊕⊕⊕ HIGH
Study quality:OK, but unclear allocation concealment and assessor blinding
Consistency:NA
Directness:OK
Imprecision:OK |
| **Major bleeding (PO)** | 5395 (1 study) 6m | 0.6% vs 1.8%
RR=0.31 (95%CI 0.17 to 0.55)
SS in favour of apixaban | ⊕⊕MODERATE
Study quality:-1 non-inferiority design, and unclear allocation concealment and assessor blinding
Consistency:NA
Directness:OK
Imprecision:OK |
| **Clinically relevant non-major bleeding** | 5395 (1 study) 6m | 3.8% vs 8.0%
RR=0.48 (95%CI 0.38 to 0.60)
SS in favour of apixaban | ⊕⊕MODERATE
Study quality:-1
Consistency:NA
Directness:OK
Imprecision:OK |

Dans ce RCT, les patients présentant une TEV aiguë (TVP ou EP) ont été randomisés pour recevoir un traitement par apixaban (10 mg deux fois par jour pendant 7 jours, suivi de 5 mg deux fois par jour) ou un traitement conventionnel (énoxaparine 1 mg/kg/12 h pendant au moins 5 jours, et un traitement par warfarine instauré en concomitance) INR cible : 2-3). Environ 86% des patients avaient déjà reçu un traitement par HBPM, héparine ou fondaparinux avant la randomisation (pour environ 55% des patients jusqu’à 24h, pour environ 30% jusqu’à 48h). Cela signifie que nous ne disposons pas de données suffisantes quant à l’efficacité de l’apixaban par rapport à l’énoxaparine lors des 24 à 48 premières heures de traitement. La durée du traitement et du suivi était de 6 mois. Il s’agissait d’une étude de non-inériorité.

Il n’y avait pas de différences significatives entre les groupes de traitement en ce qui concerne la mortalité.
GRADE: HIGH quality of evidence
L’apixaban a été prouvé non inférieur au traitement conventionnel pour le critère composite incluant la récidive de TEV symptomatique et le décès par TEV.
GRADE: HIGH quality of evidence

Les taux de saignements majeurs et de saignements non majeurs cliniquement significatifs étaient significativement inférieurs sous apixaban par rapport au traitement conventionnel.
GRADE: MODERATE quality of evidence
4.2.2 Traitement pharmacologique (+ bas de compression) versus absence de traitement (+ bas de compression)

4.2.2.1 Nadroparin+ bas de compression graduée versus bas de compression graduée dans la thrombose des veines musculaires du mollet

Il n’y a que peu d’études ayant pour objet le traitement de la thrombose veineuse distale. La plupart des études de traitement n’incluent que les thromboses veineuses profondes proximales, ou elles ne mentionnent pas si des patients présentant une thrombose veineuse distale ont été inclus, et si oui, comment.

Une seule étude sur la thrombose veineuse distale avait un nombre de patients suffisamment élevé pour pouvoir être incluse dans notre revue. Il s’agissait uniquement de patients présentant une thrombose des veines musculaires du mollet.

Les résultats sont repris dans le tableau.

<table>
<thead>
<tr>
<th>Nadroparin 180u/kg once daily and compression therapy versus compression therapy in calf muscle vein thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography: Schwarz 2010(7)</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Mortality</td>
</tr>
<tr>
<td>progression into deep veins</td>
</tr>
<tr>
<td>PE</td>
</tr>
<tr>
<td>Major bleeding</td>
</tr>
</tbody>
</table>

Dans cette étude, 109 patients présentant une thrombose isolée des veines musculaires du mollet ont été randomisés pour recevoir soit de la nadroparine + des bas de compression, soit uniquement des bas de compression. Le critère de jugement primaire était la progression au niveau des veines profondes ou de l'EP.

Aucun cas de décès, d'EP ou de saignements majeurs n'a été observé dans le cadre de l'étude.
GRADE: sans objet

Une progression vers une TVP (veines distales uniquement) a été observée chez 2 patients dans chacun des groupes. La différence n'était pas statistiquement significative.
GRADE: LOW quality of evidence
4.3 Phase de poursuite du traitement afin de prévenir les récidives de thromboembolies veineuses

4.3.1 Héparine de bas poids moléculaire versus antagoniste de la vitamine K

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N* of participants (studies)</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>2953 (16 studies) 3m-6m</td>
<td>16.5% vs 16.4% RR:0.99 (95% CI 0.85 to 1.15)</td>
<td>⧫⧫⧫⧫ MODERATE</td>
</tr>
<tr>
<td>All-cause mortality – subgroup DVT</td>
<td>1872 (11 studies) 3m-6m</td>
<td>7.4% vs 6.7% RR:1.1 (95% CI 0.79 to 1.51)</td>
<td>⧫⧫⧫ MODERATE</td>
</tr>
<tr>
<td>All-cause mortality – subgroup PE</td>
<td>162 (2 studies) 3m-6m</td>
<td>4.3% vs 0% RR: 3.28 (95% CI 0.38 to 28.33)</td>
<td>⧫⧫⧫ LOW</td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>2916 (16 studies) 3m-6m</td>
<td>7.8% vs 11.6% RR: 0.68 (95% CI 0.54 to 0.85) SS in favour of LMWH</td>
<td>⧫⧫⧫.MODERATE</td>
</tr>
<tr>
<td>Recurrent VTE – subgroup DVT</td>
<td>1845 (11 studies) 3m-6m</td>
<td>8.6% vs 11.6% RR: 0.74 (95% CI 0.56 to 0.97) SS in favour of LMWH</td>
<td>⧫⧫⧫ LOV</td>
</tr>
<tr>
<td>Recurrent VTE – Subgroup PE</td>
<td>162 (2 studies) 3m-6m</td>
<td>4.3% vs 0% RR: 3.28 (95% CI 0.38 to 28.33)</td>
<td>⧫⧫⧫ LOV</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2762 (15 studies) m-6m</td>
<td>3.3% vs 4.1% RR: 0.79 (95% CI 0.55 to 1.16)</td>
<td>⧫⧫⧫ LOV</td>
</tr>
</tbody>
</table>

For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Long term LMWH versus VKA for patients with VTE

Bibliography: meta-analysis Nice 2012(8) included these RCTs: Beckman 2003(9); Daskalopoulos 2005(10); Gonzalez-Fajardo 2008(11), Hamann 1998(12), Das 1996(13), Gonzalez-Fajardo 1999(14), Lopaciuk 1999(15), Lopez-Beret 2001(16), Pini 1994(17), Veiga 2000(18), Cesaroni 2003(19), Deitcher 2006(20); Hull 2006(21); Lee 2003(22); Lopez Beret 2001(16); Meyer 2002(23), Perez-de-Llano 2010(24), Romera 2009(25)

Aucune différence significative de mortalité n’a été observée entre le traitement par HBPM et le traitement par AVK pour toutes les études.

GRADE: MODERATE quality of evidence

De même, aucune différence significative de mortalité n’a été observée lorsque seuls les RCT incluant des patients atteints de TVP sont pris en compte (à l’exclusion des patients atteints d’EP). Enfin, aucune différence significative n’a été relevée au niveau de la mortalité dans 2 études incluant uniquement des patients atteints d’EP.

GRADE: LOW quality of evidence

Dans toutes les études, les récidives de TEV sont significativement moins nombreuses avec les HBPM qu’avec les AVK (RR : 0.68; IC à 95% 0,54 à 0,85).

GRADE: MODERATE quality of evidence

Dans les études incluant uniquement des patients présentant une TVP (à l’exclusion des patients atteints d’EP), les récidives de TVP sont significativement moins nombreuses avec les HBPM qu’avec les AVK (RR: 0,74; IC à 95% 0,56 à 0,97).

GRADE: LOW quality of evidence

Il n’existe aucune différence significative au niveau des taux de récidives de TEV dans 2 essais incluant uniquement des patients présentant une EP.

GRADE: LOW quality of evidence

Aucune différence significative n’a été observée au niveau des saignements majeurs entre les HBPM et les AVK dans toutes les études.

GRADE: LOW quality of evidence
Une méta-analyse effectuée pour la recommandation du NICE 2012 sur la maladie thromboembolique veineuse compare l’héparine de bas poids moléculaire (HBPM) aux antagonistes de la vitamine K (AVK) pour la phase de poursuite du traitement de la thromboembolie veineuse chez les patients cancéreux. 7 RCT de patients cancéreux atteints de TEV ont été inclus.

Aucune différence significative de mortalité n’a été observée entre le traitement par HBPM et le traitement par AVK.
GRADE: MODERATE quality of evidence

Dans toutes les études, les récidives de TEV sont significativement moins nombreuses avec les HBPM qu’avec les AVK RR : 0.5 (IC à 95% 0.35 à 0.71).
GRADE: MODERATE quality of evidence

Aucune différence significative au niveau des saignements majeurs n’a été observée entre les HBPM et les AVK dans toutes les études.
GRADE: LOW quality of evidence

Long term LMWH versus VKA for cancer patients with VTE

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>1415 (7 studies) 3m-12m</td>
<td>3m-12m</td>
<td>28.4% vs 29.8% RR: 0.95 (95% CI 0.81 to 1.11) NS</td>
<td>⊕⊕⊕ ⊓ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 unclear randomization and allocation concealment, open label Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>1144 (5 studies) 3m-6m</td>
<td>3m-6m</td>
<td>7% vs 14.1% RR: 0.5 (95% CI 0.35 to 0.71) SS in favour of LMWH</td>
<td>⊕⊕⊕ ⊓ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1155 (5 studies) 3m-6m</td>
<td>3m-6m</td>
<td>6.2% vs 6.2% RR: 1 (95% CI 0.64 to 1.58) NS</td>
<td>⊕⊕⊕ ⊓ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 Consistency: OK Directness: OK Imprecision: -1 wide CI</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6
4.3.3 Dabigatran versus antagoniste de la vitamine K après 10 jours de traitement initial

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>5107 (2 studies)</td>
<td>6m</td>
<td>Fox 2012</td>
<td>☒ ☒ ☒ ☒ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR: 1.00 (95%CI, 0.67 to 1.50) NS</td>
<td>Study quality: 1 >10% drop-out, no ITT, non-inferiority trials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistency: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Imprecision: OK</td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>5107 (2 studies)</td>
<td>6m</td>
<td>Fox 2012</td>
<td>☒ ☒ ☒ ☒ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR: 1.09 (95%CI, 0.76 to 1.57) NS</td>
<td>Study quality: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistency: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>5107 (2 studies)</td>
<td>6m</td>
<td>Fox 2012</td>
<td>☒ ☒ ☒ ☒ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RR: 0.76 (95%CI, 0.49 to 1.18) NS</td>
<td>Study quality: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistency: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Imprecision: OK</td>
</tr>
<tr>
<td>Major or clinically relevant nonmajor bleeding</td>
<td>2564 (1 study)</td>
<td>6m</td>
<td>Schulman 2009 only</td>
<td>☒ ☒ ☒ ☒ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.6% vs 8.8%</td>
<td>Study quality: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HR: 0.63(95%CI 0.47 to 0.84) SS in favor of dabigatran</td>
<td>Consistency: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Imprecision: OK</td>
</tr>
<tr>
<td>Any bleeding event</td>
<td>2564 (1 study)</td>
<td>6m</td>
<td>Schulman 2009 only</td>
<td>☒ ☒ ☒ ☒ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16.1% vs 21.9%</td>
<td>Study quality: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HR: 0.71(95%CI 0.59 to 0.85) SS in favor of dabigatran</td>
<td>Consistency: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Imprecision: OK</td>
</tr>
</tbody>
</table>

Deux études (Schulman 2009 et Schulman 2011) ont comparé le traitement par dabigatran 150 mg deux fois par jour au traitement par warfarine (INR cible 2-3) après l’administration pendant 5 à 9 jours d’un traitement anticoagulant initial parentéral chez des patients présentant une TEV aiguë. L’une de ces études (Schulman 2011) n’a pas encore été publiée, mais une méta-analyse des deux études (Fox 2012) a été réalisée sur la base des données non publiées. Les deux études étaient des essais de non-inferiorité.

Il n’y avait pas de différence significative de mortalité entre le traitement par dabigatran et le traitement par warfarine.

GRADE: MODERATE quality of evidence
Les taux de récidives de TEV ne différaient pas significativement entre les deux traitements. Le dabigatran s’est avéré non inférieur à la warfarine dans la prévention des récidives de TEV. Les marges de non-infériorité prédéfinies ont été fixées à des niveaux relativement élevés.
GRADE: MODERATE quality of evidence

Il n’y a aucune différence significative dans les événements hémorragiques majeurs entre les deux traitements.
GRADE: MODERATE quality of evidence

Le traitement par dabigatran a induit des taux inférieurs de tous les événements hémorragiques ainsi que des taux inférieurs du critère composite associant les événements hémorragiques majeurs et les événements hémorragiques non majeurs cliniquement significatifs, par rapport à la warfarine.
GRADE: MODERATE quality of evidence
4.3.4 Dabigatran versus antagoniste de la vitamine K après 10 jours de traitement initial chez les patients cancéreux

Dabigatran 150mg bid versus warfarin (INR 2-3), after initial parenteral anticoagulation (5-9 days) for the long-term treatment (6 mo) of VTE in patients with cancer

Bibliography: 1 RCT Schulman 2009 RE-COVER I(28), reported in systematic review: Akl 2011(29)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>112 (1 study)</td>
<td>9.4% vs 10.5%</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR= 0.89 (95% CI 0.30 to 2.61)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: -1: non-inferiority trial, >10% exclusion, no ITT Consistency:NA Directness:OK Imprecision:-1: wide CI</td>
<td></td>
</tr>
<tr>
<td>Recurrent venous thromboembolism</td>
<td>112 (1 study)</td>
<td>3.1% vs 5.3%</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR= 0.59 (95% CI 0.10 to 3.43)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: -1 non-inferiority trial, >10% exclusion, no ITT Consistency:NA Directness: OK Imprecision:-1: wide CI</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>112 (1 study)</td>
<td>7.8% vs 5.3%</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR= 0.59 (95% CI 0.10 to 3.43)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: -1: no-inferiority trial, >10% exclusion, no ITT Consistency:NA Directness:OK Imprecision:-1: wide CI</td>
<td></td>
</tr>
</tbody>
</table>

Une revue Cochrane a réalisé une analyse en sous-groupes des patients cancéreux inclus dans un RCT comparant le dabigatran (2*150 mg) à la warfarine (INR 2.0-3.0) dans le traitement de la TVP symptomatique et de l'EP. Les deux groupes ont reçu une anticoagulation parentérale initiale pendant une période médiane de 9 jours. Cet essai de non-infériorité incluait 2564 patients, parmi lesquels 4% (sous-groupe) avait reçu un diagnostic de cancer. Ce sous-groupe avait été prédéfini.

La différence dans les taux de mortalité entre le dabigatran et la warfarine n'est pas statistiquement significative.
GRADE: LOW quality of evidence

La différence dans les taux de récidives de thromboembolie veineuse entre le dabigatran et la warfarine n'est pas statistiquement significative.
GRADE: LOW quality of evidence

La différence dans les taux de saignements majeurs entre le dabigatran et la warfarine n'est pas statistiquement significative.
GRADE: LOW quality of evidence
4.3.5 Dabigatran versus antagoniste de la vitamine K après au moins 3 mois de traitement anticoagulant prolongé

Dabigatran 150mg bid versus warfarin (INR 2-3) after >3m long term treatment, for the prevention of recurrent VTE

Bibliography: Schulman 2013-RE-MEDY(30)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>2866 (1 study) 36m</td>
<td>1.2% vs 1.3% HR= 0.90 (95%CI 0.47 to 1.72) NS</td>
<td>⊕⊕⊕ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 non-inferiority, protocol alterations Consistency:NA Directness:OK Imprecision:-1 low event rates</td>
</tr>
<tr>
<td>Recurrent or fatal VTE (PO)</td>
<td>2866 (1 study) 36m</td>
<td>1.8% vs 1.3% HR= 1.44 (95 CI 0.78 to 2.64) p for noninferiority=0.01</td>
<td>⊕⊕⊕ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 non-inferiority poor reporting. Wide margin? Consistency:NA Directness:OK Imprecision:see study quality</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>2866 (1 study) 36m</td>
<td>1.2% vs 0.9% HR= 1.32 (95%CI 0.64 to 2.71) NS</td>
<td>⊕⊕⊕ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 Consistency:NA Directness:OK Imprecision:-1</td>
</tr>
<tr>
<td>Symptomatic nonfatal PE</td>
<td>2866 (1 study) 36m</td>
<td>0.7% vs 0.4% HR= 2.04 (95%CI 0.70 to 5.98) NS</td>
<td>⊕⊕⊕ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 Consistency:NA Directness:OK Imprecision:-1</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2866 (1 study) 36m</td>
<td>0.9% vs 1.8% HR= 0.52 (95%CI 0.27 to 1.02) NS</td>
<td>⊕⊕⊕ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 Consistency:NA Directness:OK Imprecision:-1</td>
</tr>
<tr>
<td>Major or clinically relevant bleeding event</td>
<td>2866 (1 study) 36m</td>
<td>5.6% vs 10.2% HR= 0.54 (95%CI 0.41 to 0.71) SS in favour of dabigatran</td>
<td>⊕⊕⊕ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Acute coronary syndrome</td>
<td>2866 (1 study) 36m</td>
<td>0.9% vs 0.2% p= 0.02 in favour of warfarin</td>
<td>⊕⊕⊕ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality:-1 Consistency:NA Directness:OK Imprecision:-1 low event rates</td>
</tr>
</tbody>
</table>

Cette étude a recruté des patients avec un antécédent d'événement de TEV ayant reçu un traitement anticoagulant à long terme pendant 3 à 12 mois. Ces patients ont été randomisés pour recevoir du dabigatran 150 mg 2x/jour ou de la warfarine (INR cible 2-3) pendant une durée maximale de 36 mois. Il s'agissait d'une étude de non-infériorité.

Il n'y avait aucune différence significative de mortalité entre le groupe sous dabigatran et le groupe sous warfarine.

GRADE: LOW quality of evidence
Le dabigatran s’est avéré non inférieur à la warfarine dans la prévention des récidives de TEV ou de TEV fatales. Toutefois, la qualité de l’étude et le choix de la marge de non-infériorité sont quelque peu contestables.

GRADE: MODERATE quality of evidence

Aucune différence significative n’a été relevée dans la TVP symptomatique ou l’EP symptomatique non fatale entre les deux bras de traitement.

GRADE: LOW quality of evidence

Il n’y avait aucune différence significative au niveau des saignements majeurs entre les deux traitements.

GRADE: LOW quality of evidence

Le nombre de saignements majeurs ou cliniquement significatifs était significativement moins élevé avec le dabigatran qu’avec la warfarine.

GRADE: MODERATE quality of evidence

Le nombre de cas de syndrome coronarien aigu était significativement plus élevé avec le traitement par dabigatran qu’avec le traitement par warfarine.

GRADE: LOW quality of evidence
4.4 Durée de la phase de poursuite du traitement

4.4.1 6 mois de traitement prolongé versus 3 mois de traitement prolongé

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause mortality</td>
<td>789</td>
<td>1-2y</td>
<td>5.3% vs 4.4% RR: 1.2 (95% CI 0.64 to 2.24) NS</td>
<td>★★★☆☆ LOW Study quality: 1 unclear allocation concealment or randomization, open label, 10% drop out Consistency: OK Directness: OK Imprecision: -1 wide CI; power?</td>
</tr>
<tr>
<td>VTE recurrence</td>
<td>789</td>
<td>1-2y</td>
<td>7% vs 8.2% RR: 0.85 (95% CI 0.52 to 1.39) NS</td>
<td>★★★☆☆☆ MODERATE Study quality: 1 Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>
| Major bleeding | 789 | 1-2y | 2.1% vs 0% RR: 16.51 (95% CI 0.96 to 285) NS | ★★★★★ ★★...
4.4.2 Traitement prolongé à long terme versus traitement prolongé à court terme

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause mortality</td>
<td>1855 (7 studies)</td>
<td>10m-4y treatment: 6-42m vs 3-6m</td>
<td>5.6% vs 5.5% RR: 0.99 (95% CI 0.68 to 1.45) NS</td>
<td>⊕⊕⊕MODERATE Study quality:open label, but OK Consistency:OK Directness:-1 very different durations Imprecision: OK</td>
</tr>
<tr>
<td>VTE Recurrence</td>
<td>1889 (8 studies)</td>
<td>10m-4y treatment: 6-42m vs 3-6m</td>
<td>7.8% vs 12.9% RR: 0.57 (95% CI 0.34 to 0.97) SS in favour of longer duration Absolute effect: 56 fewer per 1000 (95% CI from 4 fewer to 85 fewer)</td>
<td>⊕⊕⊕MODERATE Study quality:OK Consistency:OK Directness:-1 Imprecision:OK</td>
</tr>
<tr>
<td>VTE Recurrence – subgroup: 1st episode</td>
<td>789 (2 studies)</td>
<td>1-1.5y treatment: 6m vs 3m</td>
<td>7% vs 8.2% RR: 0.85 (95% CI 0.52 to 1.39) NS</td>
<td>⊕⊕⊕MODERATE Study quality:-1 allocation concealment, rando, 10% drop out Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>VTE Recurrence – subgroup: 2nd episode</td>
<td>247 (2 studies)</td>
<td>2-4y treatment: 12-42,7m vs 6m</td>
<td>3.2% vs 19.8% RR: 0.25 (95% CI 0.04 to 1.75) NS</td>
<td>⊕⊕⊕LOW Study quality:OK Consistency:OK Directness:-1 Imprecision:-1</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1829 (7 studies)</td>
<td>treatment: 6-42m vs 3-6m</td>
<td>3.4% vs 0.9% RR 2.83 (95% CI 1.34 to 5.97) SS in favour of shorter duration Absolute effect: 16 more per 1000 (95% CI from 3 more to 44 more)</td>
<td>⊕⊕⊕MODERATE Study quality: OK Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
</tbody>
</table>

For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Le NICE 2012 a réalisé une méta-analyse de tous les RCT comparant le traitement de longue durée au traitement de courte durée dans la prévention des récidives de TEV. Les durées de traitement étaient extrêmement variables : le traitement à long terme allait de 6 mois à 42 mois, tandis que le traitement à court terme variait entre 3 et 6 mois. Les populations incluses présentaient un risque de récidive potentiellement différent : certaines études concernaient uniquement des TEV non provoquées, d'autres incluaient uniquement un premier épisode de TEV, et d'autres encore n'incluaient que les seconds épisodes de TEV. Il est difficile de tirer des conclusions définitives de cette méta-analyse.
Aucune différence significative des taux de mortalité n'a été relevée lors de la comparaison entre les traitements de courte durée et les traitements de longue durée.

GRADE: MODERATE quality of evidence

Le taux de récidives de TEV était plus faible avec les traitements prolongés qu'avec les traitements à court terme.

GRADE: MODERATE quality of evidence

Aucune différence significative n'a été observée au niveau des récidives de TEV au sein des populations ayant eu un premier épisode de TEV. De même, il n'y avait aucune différence significative dans les taux de récidive au sein des populations ayant eu un second épisode de TEV.

GRADE: MODERATE to LOW quality of evidence

Le nombre de saignements majeurs était significativement plus élevé avec les traitements de longue durée qu'avec les traitements de courte durée.

GRADE: MODERATE quality of evidence
4.4.3 Dabigatran versus placebo après au moins 6 mois de traitement anticoagulant

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent or fatal VTE or unexplained death (PO)</td>
<td>1353 (1 study) 6m</td>
<td>0.4% vs 5.6% HR= 0.08 (95% CI 0.02 to 0.25) SS in favour of dabigatran</td>
<td>⊕⊕⊕⊕ HIGH Study quality:OK Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>1353 (1 study) 6m</td>
<td>0.3% vs 3.3% No statistical test</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Symptomatic nonfatal PE</td>
<td>1353 (1 study) 6m</td>
<td>0.1% vs 2.1% No statistical test</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1353 (1 study) 6m</td>
<td>0.3% vs 0% HR= not estimable</td>
<td>⊕⊕⊝⊝ LOW Study quality:OK Consistency:NA Directness:OK Imprecision: -2 no event in placebo group</td>
</tr>
<tr>
<td>Major or clinically relevant bleeding event</td>
<td>1353 (1 study) 6m</td>
<td>5.3% vs 1.8% HR= 2.92 (95% CI 1.52 to 5.60) SS in favour of placebo</td>
<td>⊕⊕⊕⊕ HIGH Study quality:OK Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Acute coronary syndrome</td>
<td>1353 (1 study) 6m</td>
<td>0.1% vs 0.2% NT</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Cette étude a recruté des patients avec antécédent d’événement de TEV ayant reçu un traitement anticoagulant à long terme pendant 6 à 18 mois. Ils ont été randomisés pour recevoir soit du dabigatran 150 mg 2x/jour soit un placebo, pendant une période supplémentaire de 6 mois.

La mortalité n’a pas été rapportée comme un critère d’évaluation séparé.

Le taux de récidives de TEV (fatales ou non fatales) ou de décès inexpliqués (en tant que critère d’évaluation composite) était significativement plus élevé dans le groupe placebo. La plupart des événements étaient des événements de type TEV.

GRADE: HIGH quality of evidence

Les taux de saignements majeurs étaient très faibles dans les deux groupes (0 événement dans le groupe placebo).

GRADE: LOW quality of evidence
Les saignements majeurs ou les saignements non majeurs cliniquement significatifs (en tant que critère d’évaluation composite) étaient plus fréquemment observés dans le groupe sous dabigatran. La différence était statistiquement significative.
GRADE: HIGH quality of evidence
4.4.4 Apixaban versus placebo après au moins 6 mois de traitement anticoagulant

Apixaban 2.5mg bid or 5mg bid versus placebo after long term treatment (6-12m) for VTE, for the prevention of recurrent VTE

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent VTE or death from any cause (PO)</td>
<td>2486 (1 study) 12m</td>
<td>Apix 2.5 vs apix 5 vs pla</td>
<td>⊕⊕⊕⊕ HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8% vs 4.2% vs 11.6%</td>
<td>Study quality:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apix 2.5 vs pla:</td>
<td>Consistency:NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR=0.33 (95% CI 0.22 to 0.48)</td>
<td>Directness:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS in favour of apixaban 2.5</td>
<td>Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apix 5 vs pla:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR=0.36 (95% CI 0.25 to 0.53)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS in favour of apixaban 5</td>
<td></td>
</tr>
</tbody>
</table>

Recurrent VTE, VTE-related death, myocardial infarction, stroke, or cardiovascular disease–related death	2486 (1 study) 12m	2.1% vs 2.3% vs 10.0%	⊕⊕⊕⊕ HIGH
		Apix 2.5 vs pla:	Study quality:OK
		RR= 0.21 (95%CI 0.13 to 0.35)	Consistency:NA
		SS in favour of apixaban 2.5	Directness:OK
		Apix 5 vs pla:	Imprecision:OK
		RR= 0.23 (95%CI 0.14 to 0.38)	
		SS in favour of apixaban 5	

Major bleeding	2486 (1 study) 12m	0.2% vs 0.1% vs 0.5%	⊕⊕⊝⊝ LOW	
		Apix 2.5 vs pla:	Study quality:OK	
		RR= 0.49 (95%CI 0.09 to 2.64)	Consistency:NA	
		NS	Directness:OK	
		Apix 5 vs pla:	Imprecision:	2 very wide CI; low event rates
		RR=0.25 (95%CI 0.03 to 2.24)		
		NS		

Clinically relevant non-major bleeding	2486 (1 study) 12m	3.0% vs 4.2% vs 2.3%	⊕⊕⊝⊝ MODERATE	
		Apix 2.5 vs pla:	Study quality:OK	
		RR= 1.29 (95% CI 0.72 to 2.33)	Consistency:NA	
		NS	Directness:OK	
		Apix 5 vs pla:	Imprecision:	1 wide CI
		RR= 1.82 (95%CI 1.05 to 3.18)		
		SS (more bleeding with apixaban 5 mg)		

Cette étude a recruté des patients avec un antécédent de TEV ayant reçu un traitement standard à long terme ou un traitement par apixaban pendant 6 à 12 mois. Les patients ont été randomisés pour recevoir soit de l’apixaban 2,5 mg 2x/jour ou 5 mg 2x/jour, soit un placebo pendant une période supplémentaire de 12 mois.

En moyenne, 13 % de ces patients avaient déjà eu un épisode de TEV.

La mortalité n’a pas été rapportée comme un critère d’évaluation séparé.
Les taux de récidives de TEV ou de décès toutes causes confondues (en tant que critère d’évaluation composite) étaient significativement plus faibles dans les groupes de traitement sous apixaban que dans celui sous placebo.

GRADE: HIGH quality of evidence

Le taux de récidives de TEV, de décès par TEV, d'infarctus du myocarde, d'accident vasculaire cérébral, ou de décès par maladie cardiovasculaire (en tant que critère d'évaluation composite) était significativement plus faible dans les groupes de traitement sous apixaban que dans celui sous placebo.

GRADE: HIGH quality of evidence

Le taux de saignements majeurs était faible. Il n'y avait aucune différence significative dans les saignements majeurs entre les groupes de traitement sous apixaban et celui sous placebo, mais ce critère d'évaluation était peu précis.

GRADE: LOW quality of evidence

Aucune différence significative n'a été observée dans les saignements non majeurs cliniquement significatifs lors de la comparaison entre l'apixaban 2,5 mg 2x/jour et le placebo. En revanche, une différence significative a été relevée pour ce critère d'évaluation lors de la comparaison entre l’apixaban 5 mg 2x/jour et le placebo.

GRADE: MODERATE quality of evidence
4.4.5 Rivaroxaban versus placebo après au moins 6 mois de traitement anticoagulant

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>1197 (1 study) 6m-12m</td>
<td>0.2% vs 0.3% No statistical test</td>
<td>NOT APPLICABLE</td>
</tr>
<tr>
<td>Symptomatic recurrent VTE (PO)</td>
<td>1197 (1 study) 6m-12m</td>
<td>1.3% vs 7.1% HR: 0.18 (95% CI 0.09 to 0.39) SS in favour of rivaroxaban</td>
<td>⊗ ⊗ ⊗ ⊗ HIGH</td>
</tr>
<tr>
<td>Major or clinically relevant nonmajor bleeding (PO)</td>
<td>1197 (1 study) 6m-12m</td>
<td>6.0% vs 1.2% HR: 5.19 (95% CI 2.3 to 11.7) SS in favour of placebo</td>
<td>⊗ ⊗ ⊗ ⊗ HIGH</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1197 (1 study) 6m-12m</td>
<td>0.7% vs 0% NS</td>
<td>⊗ ⊗ ⊗ ⊗ ⊗ LOW</td>
</tr>
</tbody>
</table>

Cette étude inclut des patients traités pendant 6 à 12 mois par un AVK ou par rivaroxaban pour un épisode de TEV (TVP ou EP). Pour 14,1 % à 17,9 % de ces patients, il ne s’agissait pas d’un premier épisode de TEV.

Les patients ont été randomisés pour recevoir soit rivaroxaban 20 mg par jour, soit un placebo correspondant. La durée du traitement de l’étude était de 6 ou 12 mois.

Les taux de mortalité étaient très faibles dans les deux groupes. Aucun test statistique n’a été réalisé. GRADE: Sans objet

Les TEV récidivantes symptomatiques étaient significativement moins nombreuses chez les patients traités par rivaroxaban par rapport à ceux traités par placebo (HR : 0,18 ; IC à 95 % 0,09 à 0,39). GRADE: HIGH quality of evidence

Le nombre de saignements majeurs ou non majeurs cliniquement significatifs était significativement plus élevé chez les patients traités par rivaroxaban (HR: 5.19 ; IC à 95 % 2,3 à 11,7). GRADE: HIGH quality of evidence

Les taux de saignements majeurs étaient très faibles. La différence entre le rivaroxaban et le placebo n’était pas significative. GRADE: LOW quality of evidence

La réduction des taux de TEV sous rivaroxaban s’accompagnait de taux de saignement d’autant plus élevés. Le bénéfice clinique doit être remis en cause.
Aspirin 100mg/d versus placebo after long-term treatment with vitamine K antagonists, for the prevention of recurrent VTE

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1225 (2 studies) 2-4y</td>
<td>Becattini 2012 1.4% per year vs 1.3% per year HR=1.04 (95%CI: 0.32 to 3.42) NS</td>
<td>⊕⊕⊝.getJSONObject LOW Study quality:-1 secondary endpoints Consistency:OK Directness:OK Imprecision:-1, wide CI, low event rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brighton 2012 3.9% vs 4.4% (rate over median 37.2m) NT</td>
<td></td>
</tr>
<tr>
<td>Recurrent VTE (symptomatic DVT or PE, nonfatal or fatal PE)</td>
<td>1225 (2 studies) 2-4y</td>
<td>Becattini 2012 6.6% vs 11.2% per year HR=0.58 (95%CI: 0.36 to 0.93) SS in favour of aspirin Brighton 2012 4.8% per year vs 6.5% per year HR= 0.74 (95% BI 0.52 to 1.05) NS, p=0.09</td>
<td>⊕⊕⊝DBObject LOW Study quality:-1 moderate drop-out Consistency:OK Directness:-1 difference in baseline recurrence rate: different risk populations Imprecision:OK</td>
</tr>
<tr>
<td>Major bleeding or clinically relevant nonmajor bleeding</td>
<td>1225 (2 studies) 2-4y</td>
<td>Becattini 2012 2.0% vs 2.0% (rate over 2y) HR=0.98 (95%CI: 0.24 to 3.96) NS Brighton 2012 1.1% per year vs 0.6% per year HR= 1.73 (95% CI 0.72 to 4.11) NS</td>
<td>⊕⊕⊝DBObject LOW Study quality:-1 Consistency:OK Directness:OK Imprecision:-1 low event rates</td>
</tr>
<tr>
<td>Recurrent VTE or arterial event (nonfatal myocardial infarction, unstable angina, stroke, transient ischemic attack, acute ischemia of the lower limbs)</td>
<td>403 (1 study) 2y</td>
<td>Becattini 2012 17.6% vs 24.4% (rate over 2y) HR=0.98 (95%CI: 0.24 to 3.96) NS</td>
<td>⊕⊕⊝DBObject LOW Study quality:-1 moderate drop-out Consistency:OK Directness:OK Imprecision:-1 wide CI</td>
</tr>
<tr>
<td>Major vascular event (symptomatic VTE, myocardial infarction, stroke, or cardiovascular death)</td>
<td>822 (1 study) median 37.2m</td>
<td>Brighton 2012 5.2% per year vs 8.0% per year HR= 0.66 (95% CI 0.48 to 0.92) SS</td>
<td>⊕⊕⊕XObject MODERATE Study quality:-1 moderate drop-out Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
</tbody>
</table>
Deux études ont recruté des patients ayant eu un tout premier épisode de TEV traités à long terme par un antagoniste de la vitamine K (pendant 6 semaines à 18 mois ; 86,5 % des patients ont reçu un AVK pendant plus de 6 mois). Les patients ont été randomisés pour recevoir 100 mg d’aspirine ou un placebo, pendant 2 à 4 ans.

Aucune différence n’a été observée au niveau des taux de mortalité entre les deux groupes.
GRADE: LOW quality of evidence

Un taux plus faible de récidives de TEV a été observé avec le traitement par aspirine. La différence était statistiquement significative dans une seule étude (Becattini 2012). Cependant, le risque de récidive était différent dans les deux études. Les patients traités par placebo dans l’étude de Becattini avaient un taux de récidive de 11,2 %, alors que ce taux s’élevait à seulement 4,8 % dans l’étude de Brighton. Les populations dans ces études sont cliniquement hétérogènes.
GRADE: LOW quality of evidence

Aucune différence statistiquement significative n’a été observée dans les taux de saignements majeurs ou non majeurs cliniquement significatifs entre le traitement par aspirine et le traitement placebo.
GRADE: LOW quality of evidence

Dans l’étude de Becattini, il n’y avait aucune différence significative au niveau du taux du critère d’évaluation composite « récidives de TEV ou événements artériels ». Ce critère d’évaluation ne comprenait pas le taux de mortalité.

Dans l’étude de Brighton, il y avait une différence statistiquement significative en faveur de l’aspirine pour le critère d’évaluation composite comprenant les récidives de TEV, l’infarctus du myocarde, l’accident vasculaire cérébral ou le décès d’origine cardiovasculaire.
GRADE: MODERATE to LOW quality of evidence
4.5 Traitement de la TEV à domicile versus à l'hôpital

4.5.1 Traitement à domicile versus traitement à l'hôpital de la thrombose veineuse profonde

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Relative effect (95% CI) Absolute effect</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>1708 (6 studies)</td>
<td>3m-6m</td>
<td>RR: 0.72 (95%CI, 0.45 to 1.15) NS</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>1708 (6 studies)</td>
<td>3m-6m</td>
<td>RR: 0.61 (95%CI, 0.42 to 0.90) SS in favour of home treatment</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1708 (6 studies)</td>
<td>3m-6m</td>
<td>RR: 0.67 (95%CI, 0.33 to 1.36) NS</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>1708 (6 studies)</td>
<td>3m-6m</td>
<td>RR: 1.29 (95%CI, 0.94 to 1.78) NS</td>
<td>⊕⊕⊕⊝⊝ LOW</td>
</tr>
</tbody>
</table>

Une synthèse méthodique a comparé le traitement à domicile au traitement hospitalier pour les patients présentant une thrombose veineuse profonde aiguë. 1708 patients émanant de 6 études y ont été inclus. La durée moyenne du séjour hospitalier pour les patients traités à domicile était de 1 à 3 jours, contre 6,5 à 9 jours pour les patients traités à l'hôpital. La durée du suivi oscillait entre 3 et 6 mois. Certaines études ont comparé le traitement initial à domicile par HBPM au traitement initial par UFH en milieu hospitalier. La qualité globale des études était faible.

Aucune différence significative n'a été observée au niveau des taux de mortalité entre le traitement à domicile et le traitement hospitalier.

GRADE: LOW quality of evidence

Le taux de récidives des TEV était significativement plus faible chez les patients traités à domicile par rapport à ceux traités à l'hôpital.

GRADE: LOW quality of evidence

Aucune différence significative n'a été observée dans les taux de saignements majeurs ou mineurs.

GRADE: LOW quality of evidence
Traitement à domicile (sortie précoce) versus traitement à l'hôpital de l'embolie pulmonaire

Outpatient (early discharge) versus inpatient treatment for pulmonary embolism with low mortality risk

Bibliography:

- Otero 2010(48), Aujesky 2011(49)

Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Relative effect (95% CI)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>476 (2 studies)</td>
<td>3m</td>
<td>Otero 2010: 4.2% vs 8.3% RR: 0.50 (95% CI 0.12 to 2.01) Aujesky 2011: 0.6% vs 0.6% P for non-inferiority 0.005</td>
<td>✨✨✨ LOW Study quality: -1 unblinded data analysis Consistency: OK Directness: OK Imprecision:-1 power and design</td>
<td>LOW</td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>476 (2 studies)</td>
<td>3m</td>
<td>Otero 2010: 2.8% vs 3.3% RR: 0.83 (95% CI 0.12 to 5.74) Aujesky 2011: 0.6% vs 0% P for non-inferiority 0.011</td>
<td>✨✨✨ LOW Study quality: -1 Consistency: OK Directness: OK Imprecision:-1</td>
<td>LOW</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>476 (2 studies)</td>
<td>3m</td>
<td>Otero 2010: 1.4% vs 1.6% RR: 0.83 (95% CI 0.05 to 13.04) Aujesky 2011: 1.8% vs 0% Noninferiority margin not reached in primary analysis, but reached in per protocol-analysis</td>
<td>✨✨✨✨ VERY LOW Study quality: -1 Consistency: -1 Directness: OK Imprecision:-1</td>
<td>VERY LOW</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>132 (1 studies)</td>
<td>3m</td>
<td>Otero 2010: 4.2% vs 3.3% RR: 1.25 (95% CI 0.22 to 7.24)</td>
<td>✨✨✨ LOW Study quality: -1 unblinded Consistency: NA Directness: OK Imprecision:-1 insufficient power</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Deux RCT ont comparé le traitement ambulatoire (sortie précoce des patients de l'hôpital) au traitement hospitalier de l'embolie pulmonaire, chez des patients présentant un faible risque de mortalité (évalué à l'aide d'un outil de prédiction clinique). L'une de ces études (Otero 2010) a été arrêtée précocement en raison des taux de complications élevés dans les deux groupes de traitement. La seconde étude (Aujesky 2011) était un essai de non-inériorité. Les patients randomisés pour recevoir le traitement ambulatoire sont sortis de l'hôpital au bout de 3 à 5 jours dans la première étude (Otero 2010) et après un jour dans la seconde étude (Aujesky 2011). La qualité globale des données probantes est faible en raison des méthodologies différentes des études et du faible nombre de patients.

Aucune différence significative n'a été observée au niveau de la mortalité entre le traitement ambulatoire et le traitement hospitalier.
GRADE: LOW quality of evidence

Aucune différence significative n'a été observée dans les taux de récidives de thromboembolie veineuse entre le traitement ambulatoire et le traitement hospitalier.
Aucune différence significative n'a été observée au niveau des saignements majeurs dans l'une des deux études, avec un intervalle de confiance très large (Otero 2010). Dans la seconde étude (Aujesky 2011), le traitement ambulatoire s'est avéré non inférieur au traitement hospitalier dans l'analyse par protocole, mais pas dans l'analyse primaire (analyse en intention de traiter modifiée).

GRADE: VERY LOW quality of evidence

Une étude (Otero 2010) a rapporté des saignements mineurs. Aucune différence significative n'a été observée entre le traitement en ambulatoire et le traitement hospitalier. Cette étude manquait de puissance.

GRADE: LOW quality of evidence
4.6 Prévention du syndrome post-thrombotique

4.6.1 Bas de compression graduée versus absence de bas de compression graduée

Le NICE 2012 a réalisé une méta-analyse de 2 études comparant l'effet du port de bas de contention par rapport à l'absence de port de ces bas chez des patients ayant eu un premier épisode de TVP proximale confirmée objectivement. Les patients avaient dû porter les bas pendant au moins 2 ans. La durée du suivi oscillait entre 3 et 8 ans.

Globalement, l'observance thérapeutique des bas de contention était bonne dans les deux études, plus de 90 % des patients les portant la majeure partie de la journée.

Le taux de syndrome post-thrombotique était plus faible chez les patients portant des bas de contention que chez ceux n’en portant pas.

GRADE: HIGH quality of evidence

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-thrombotic syndrome</td>
<td>374 (2 studies)</td>
<td>22.6% vs. 47.9%</td>
<td>RR: 0.47 (95% CI 0.35 to 0.64)</td>
</tr>
<tr>
<td></td>
<td>3 to 8y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6
Dans cette étude, l'utilisation continue de bas de contention a été comparée à l'absence d'utilisation continue chez des patients ayant reçu un traitement pharmacologique de 6 mois + des bas de contention pour une première thrombose veineuse profonde proximale ou une récidive de cet événement. La durée du suivi était de 3 ans.

Il n'y avait aucune différence statistiquement significative dans le taux d'apparition de modifications cutanées post-thrombotiques (critère d'évaluation primaire de l'étude) entre les patients ayant porté des bas de contention en continu et les patients ne les ayant pas portés en continu.

GRADE: LOW quality of evidence

À un suivi de trois mois et d'un an, mais pas ultérieurement, les patients ayant porté des bas de contention en continu avaient un risque inférieur de développer des symptômes associés au syndrome post-thrombotique par rapport aux patients n'ayant pas porté les bas de contention en continu.

GRADE: MODERATE quality of evidence

Aucune information n'était disponible sur la sécurité du traitement.
4.6.3 Bas de compression élastiques à hauteur de cuisse versus bas de compression élastiques en dessous du genou

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative incidence of PTS (PO)</td>
<td>267</td>
<td>3y</td>
<td>Thigh-length 32.6% Below-knee 35.6% HR = 0.93 (95% CI 0.62 to 1.41), NS</td>
<td>MODERATE</td>
</tr>
<tr>
<td>CES related side-effects</td>
<td>267</td>
<td>2y</td>
<td>Thigh-length 40.7% Below-knee 27.3% HR not reported, SS in favour of below-knee, p=0.017</td>
<td>MODERATE</td>
</tr>
<tr>
<td>Premature discontinuation of CES use</td>
<td>267</td>
<td>2y</td>
<td>Thigh-length 21.5% Below-knee 13.6% HR not reported, NS, p=0.11</td>
<td>MODERATE</td>
</tr>
</tbody>
</table>

Dans cette étude, des bas de contention élastiques (BCE) à hauteur de cuisse ont été comparés à des BCE en dessous du genou pour la prévention du syndrome post-thrombotique (SPT) chez des patients ayant eu un premier épisode de thrombose veineuse proximale. Tous les patients ont reçu un traitement pharmacologique pendant 10 mois et ont dû porter des BCE pendant deux ans.

Aucune différence statistiquement significative n’a été observée entre les BCE à hauteur de cuisse et les BCE en dessous du genou sur le plan de l’incidence du syndrome post-thrombotique au cours de la période de suivi de 3 ans, qui constituait le critère d’évaluation primaire de l’étude.

GRADE: MODERATE quality of evidence

Les BCE à hauteur de cuisse ont donné lieu à un taux plus élevé d’effets indésirables liés à leur port (prurit, érythème ou autres formes de réactions allergiques) que les bas en dessous du genou.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée entre les BCE à hauteur de cuisse et les BCE en dessous du genou en termes de taux d’abandons prématurés.

GRADE: MODERATE quality of evidence
5 Résumé des résultats: la thromboprophylaxie dans la chirurgie majeure de la hanche
5.1 Traitement pharmacologique versus placebo dans la chirurgie élicitive de la hanche

5.1.1 HNF versus placebo dans la chirurgie élicitive de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>(N^\circ) of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (both symptomatic and asymptomatic)</td>
<td>515 (8 studies)</td>
<td>2-16d treatment</td>
<td>UFH:26.1% Nil:25.0% RR: 0.53 (95% CI 0.32 to 0.89) SS in favour of UFH Absolute effect: -20% (95% CI -31% to -9%)</td>
<td>Not applied</td>
</tr>
<tr>
<td>PE</td>
<td>283 (3 studies)</td>
<td>2-16d treatment</td>
<td>UFH:14.0% Nil:15.6% RR: 0.88 (95% CI 0.30 to 2.61) NS</td>
<td>Not applied</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>687 (9 studies)</td>
<td>2-16d treatment</td>
<td>UFH: 7.6% Nil:5.5% RR: 1.42 (95% CI 0.84 to 2.41) NS</td>
<td>Not applied</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette méta-analyse réalisée par NICE 2010, l'HNF a été comparée au placebo ou à l'absence de traitement chez des patients subissant une arthroplastie élicitive la hanche. La méta-analyse incluait 9 RCT. Tous les RCT ont été extraits d'une ancienne revue systématique (Collins 1988), discutée dans le cadre d'une recherche antérieure de la littérature en vue de la conférence de consensus sur la TEV de 2002.

Aucune nouvelle étude comparant l'HNF au placebo ou à l'absence de traitement dans l'arthroplastie élicitive de la hanche n'a été publiée depuis la dernière conférence de consensus.

Nous ne disposons pas de suffisamment d'informations pour savoir si toutes les études ont contrôlé les patients pour le critère d'évaluation « TVP » à un moment spécifique après la chirurgie. Cela semble être le cas pour de nombreuses études. Le taux de TVP rapporté inclut donc à la fois les TVP symptomatiques et asymptomatiques.

Le traitement par HNF a donné lieu à un taux moins élevé de thromboses veineuses profondes que le placebo ou l'absence de traitement.

Aucune différence statistiquement significative n'a été observée entre l'HNF et le placebo ou l'absence de traitement dans le taux d'embolies pulmonaires.
Aucune différence statistiquement significative n’a été observée entre les deux groupes dans le taux de saignements majeurs.

Nous n’avons pas évalué cette comparaison sur la base du système GRADE, car les données obtenues sur les RCT inclus étaient insuffisantes.
Pour l’ensemble des études portant sur l’arthroplastie élective de la hanche, le NICE 2010 évalue la qualité des preuves comme bonne. Notre revue antérieure de la littérature était moins positive concernant la qualité de la revue systématique réalisée par Collins (pas d’évaluation de la qualité des RCT inclus, inclusion de RCT non en aveugle, etc.)
Dans cette méta-analyse réalisée par NICE 2010, l'HBPM a été comparée au placebo ou à l'absence de traitement chez des patients subissant une arthroplastie élective de la hanche.

Chez la plupart des patients inclus dans ces études, le critère d'évaluation TVP a été contrôlé à l'aide de techniques d'imagerie, de sorte que le taux de TVP rapporté inclut à la fois les TVP symptomatiques et asymptomatiques.

Le taux de thrombose veineuse profonde est plus faible chez les patients recevant une HBPM que chez ceux recevant un placebo ou ne recevant aucun traitement.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée dans le taux d'embolies pulmonaires.

GRADE: LOW quality of evidence

Aucune différence statistiquement significative n'a été observée dans le taux de saignements majeurs.

GRADE: LOW quality of evidence
5.2 Traitement pharmacologique versus absence de thromboprophylaxie dans la chirurgie pour fracture de la hanche

5.2.1 HNF versus absence de thromboprophylaxie dans la chirurgie pour fracture de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N* of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n=380 (3 studies) 2-16 d</td>
<td>10.4% vs 10.7% RR: 0.96 (95% CI 0.55 to 1.67)</td>
<td>NS</td>
<td>Not applied</td>
</tr>
<tr>
<td>DVT (both symptomatic and asymptomatic)</td>
<td>n= 464 (6 studies) 2-16 d</td>
<td>26.7% vs 50.4% RR: 0.56 (95% CI 0.39 to 0.81) SS in favour of UFH Absolute effect: -23% (95% CI -35% to -12%)</td>
<td>Not applied</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>n= 148 (2 studies) 2-16 d</td>
<td>1.4% vs 2.7% RR: 0.50 (95% CI 0.05 to 5.34)</td>
<td>NS</td>
<td>Not applied</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 252 (4 studies) 2-16 d</td>
<td>3.1% vs 4.9% RR: 0.69 (95% CI 0.23 to 2.13)</td>
<td>NS</td>
<td>Not applied</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Le NICE 2010 a examiné l'HNF par rapport au placebo ou à l'absence de traitement dans la chirurgie pour fracture de la hanche. Six RCT ont été identifiés et inclus dans une méta-analyse. Tous les RCT ont été extraits d’une ancienne revue systématique (Collins 1988), déjà discutée dans le cadre d’une recherche antérieure de la littérature en vue de la conférence de consensus sur la TEV de 2002.

Nous ne disposons pas de suffisamment d'informations pour savoir si toutes les études ont contrôlé les patients pour le critère d'évaluation « TVP » à un moment spécifique après la chirurgie. Cela semble être le cas pour de nombreuses études. Le taux de TVP rapporté inclut donc à la fois les TVP symptomatiques et asymptomatiques.

Dans cette méta-analyse, aucune différence statistiquement significative n’a été observée entre l’héparine non fractionnée et le placebo ou l’absence de thromboprophylaxie sur les critères d'évaluation suivants : mortalité, embolie pulmonaire et saignements majeurs.

On a observé un nombre de thromboses veineuses profondes significativement plus faible chez les patients traités par l’héparine non fractionnée pendant deux à seize jours par rapport aux patients traités par placebo ou n’ayant reçu aucun traitement.
Nous n'avons pas évalué cette comparaison sur la base du système GRADE, car les données obtenues sur les RCT inclus étaient insuffisantes.

Nice évalue la qualité des preuves comme bonne. Notre revue antérieure de la littérature était moins positive concernant la qualité de la revue systématique réalisée par Collins (pas d'évaluation de la qualité des RCT inclus, inclusion de RCT non en aveugle, etc.)
5.2.2 HBPM versus placebo dans la chirurgie pour fracture de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n= 68 (1 study)</td>
<td>9 d</td>
<td>10% vs 10.5% RR= 0.95 (95% CI 0.23 to 3.92) NS</td>
<td>☆☆☆☆☆ LOW Study quality: -1, no ITT, 82% evaluable, only 1 trial Consistency: NA Directness: OK Imprecision: -1, wide CI</td>
</tr>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>n= 218 (2 studies)</td>
<td>9-12 d</td>
<td>32.4% vs 67.2% RR= 0.48 (95% CI 0.35 to 0.65) SS in favour of LMWH Absolute effect: -35% (95% CI -48% to -23%)</td>
<td>☆☆☆☆☆ MODERATE Study quality: -1, defined as low quality by SR, limited information available Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 82 (1 study)</td>
<td>9 d</td>
<td>0 vs 0 RR: not estimable</td>
<td>☆☆☆☆☆ LOW Study quality: -1, no ITT, defined as low quality by SR Consistency: NA Directness: OK Imprecision: -1 lack of power</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Cette méta-analyse incluait deux petits RCT comparant une HBPM à un placebo pendant 7 à 12 jours pour la thromboprophylaxie après une chirurgie pour fracture de la hanche.

Le critère d’évaluation TVP a été contrôlé chez tous les patients à l’aide de techniques d’imagerie, de sorte que le taux rapporté de TVP inclut à la fois les TVP symptomatiques et asymptomatiques.

La mortalité a été rapportée dans une étude seulement. Aucune différence statistiquement significative n’a été relevée entre l’HBPM et le placebo pour ce critère d’évaluation.

GRADE: LOW quality of evidence

Le taux de TVP (symptomatiques et asymptomatiques) observé dans deux petites études était quasi deux fois plus élevé dans le groupe placebo que dans le groupe traité par HBPM.

GRADE: MODERATE quality of evidence

Aucun cas de saignement majeur n’a été rapporté dans une étude. Le risque relatif n’a pas pu être estimé.

GRADE: LOW quality of evidence
5.2.3 Antagonistes de la vitamine K versus absence de thromboprophylaxie dans la chirurgie pour fracture de la hanche

VKA versus no treatment for thromboprophylaxis in hip fracture surgery

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n=727 (6 studies) 3w-10m</td>
<td>13.0% vs 17.0% RR: 0.76 (95% CI 0.54 to 1.07) NS</td>
<td>⊕⊕⊝⊝ LOW Study quality: -1 mostly OL, quite small trials, limited information available Consistency:OK Directness:OK Imprecision: CI does not exclude possible benefit</td>
</tr>
<tr>
<td>DVT (both symptomatic and asymptomatic)</td>
<td>n= 485 (5 studies) 3w-10m</td>
<td>23.3% vs 55.0% RR: 0.44 (95% CI 0.34 to 0.56) SS in favour of VKA Absolute effect: -32% (95%CI -40% to -24%)</td>
<td>⊕⊝⊝⊝ LOW Study quality: -1 mostly OL, quite small trials, limited information available Consistency:OK Directness:1 unclear whether all trials screened patients Imprecision: OK</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>n= 610 (5 studies) 3w-3m</td>
<td>1.3% vs 9.2% RR: 0.21 (95% CI 0.08 to 0.53) SS in favour of VKA -7% (95% CI -11% to -3%)</td>
<td>⊕⊕⊕GORDETE Study quality: -1 mostly OL, quite small trials, limited information available Consistency:OK Directness:OK Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 727 (6 studies) 3w-10m</td>
<td>8.3% vs 5.8% RR: 1.35 (95% CI 0.70 to 2.62) NS</td>
<td>⊕⊕⊝⊝ LOW Study quality: -1 mostly OL, quite small trials, limited information available Consistency:OK Imprecision: CI does not exclude possible harm</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Cette méta-analyse incluait six RCT (la plupart en ouvert) comparant une thromboprophylaxie (de durée variable) par AVK à une absence de traitement chez des patients subissant une chirurgie pour une fracture de la hanche. Toutes les études étaient relativement anciennes : elles ont été réalisées entre 1965 et 1989.

Nous ne disposons pas de suffisamment d'informations pour savoir si toutes les études ont contrôlé les patients pour le critère d'évaluation « TVP » à un moment spécifique après la chirurgie. Cela semble être le cas pour de nombreuses études. Le taux de TVP rapporté inclut donc à la fois les TVP symptomatiques et asymptomatiques.

Le NICE 2010 fait remarquer qu’un large éventail de techniques a été utilisé pour réparer les fractures, certaines d'entre elles n'étant plus utilisées actuellement. Ceci pourrait limiter l'appliquabilité des preuves.
Aucune différence statistiquement significative n’a été observée au niveau de la mortalité entre les deux groupes de traitement.

GRADE: LOW quality of evidence (quality estimate based on limited data)

Le nombre de thromboses veineuses profondes et d’embolies pulmonaires était significativement plus élevé dans le groupe n’ayant reçu aucun traitement que dans celui ayant reçu un AVK.

GRADE: MODERATE quality of evidence (quality estimate based on limited data)

La différence pour le critère d’évaluation « saignements majeurs » n’était pas statistiquement significative.

GRADE: LOW quality of evidence (quality estimate based on limited data)
5.3 Traitement pharmacologique versus traitement pharmacologique pour la thromboprophylaxie dans l'arthroplastie élec\"{t}ve de la hanche

5.3.1 Antagonistes de la vitamine K versus HBPM dans l'arthroplastie élec\"{t}ve de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT</td>
<td>1393 (2 studies)</td>
<td>VKA:24.6% LMWH:12.5% RR:1.94 (95% CI 1.53 to 2.44) Absolute effect: 12% (95% CI 7% to 16%)</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: -1, low FU and no ITT Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>3011 (1 study)</td>
<td>VKA:0.8% LMWH:1.0% RR:0.81 (95% CI 0.38 to 1.73) NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: unblinded assessment and only 1 trial Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>5082 (3 studies)</td>
<td>VKA:1.3% LMWH:3.3% RR:0.57 (95% CI 0.38 to 0.85) SS in favour of VKA Absolute effect: -1% (95% CI -4% to 1%)</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: -1 unblinded assessment in 2/3 Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette méta-analyse réalisée par le NICE 2010, des antagonistes de la vitamine K sont comparés à des héparines de bas poids moléculaire chez des patients subissant une arthroplastie élec\"{t}ve de la hanche. La méta-analyse incluait 3 RCT.

Le taux de TVP est plus élevé chez les patients traités par AVK que chez ceux traités par HBPM.
GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée dans le taux d'embolies pulmonaires entre les deux traitements.
GRADE: MODERATE quality of evidence

Le taux de saignements majeurs est plus faible chez les patients traités par AVK que chez ceux traités par HBPM.
GRADE: MODERATE quality of evidence
5.3.2 Dabigatran versus énoxaparine dans l’arthroplastie élec­tive de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>4374 (2 studies) 3 months</td>
<td>Eriksson 2007</td>
<td>0.3% vs 0% NT</td>
<td>⚫⚫⚫⊕ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eriksson 2011</td>
<td>0.1% vs 0.1% NS</td>
<td></td>
</tr>
<tr>
<td>Total VTE + all cause mortality (venographic or symptomatic) (PO)</td>
<td>4374 (2 studies) 3 months</td>
<td>Eriksson 2007</td>
<td>6.0% vs 6.7% ARD= -0.7% (95%CI -2.9% to 1.6%) P for non-inferiority: < 0.0001</td>
<td>⚫⚫⚫⚫ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eriksson 2011</td>
<td>7.7% vs 8.8% ARD= -1.1% (95%CI -3.8% to 1.6%) P for non-inferiority: < 0.0001</td>
<td></td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>4374 (2 studies) 3 months</td>
<td>Eriksson 2007</td>
<td>0.5% vs 0.1% NT</td>
<td>⚫⚫⚫⚫ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eriksson 2011</td>
<td>0.0% vs 0.4% NS</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>4374 (2 studies) 3 months</td>
<td>Eriksson 2007</td>
<td>2.0% vs 1.6% NS</td>
<td>⚫⚫⚫⚫ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eriksson 2011</td>
<td>1.4% vs 0.9% NS</td>
<td></td>
</tr>
</tbody>
</table>

Deux RCT ont comparé le dabigatran 220 mg à l’énoxaparine 40 mg/j pour la prévention de la TEV après une arthroplastie totale de la hanche. La durée du traitement était de 28 à 35 jours. Les deux études étaient des essais de non-infériorité.

Les taux de mortalité étaient faibles dans les deux groupes. Une seule étude a réalisé un test statistique pour ce critère d’évaluation. Aucune différence significative n’a été relevée dans les taux de mortalité. GRADE: MODERATE quality of evidence
Le critère d’évaluation primaire était un composite incluant tous les événements thromboemboliques veineux (symptomatiques et asymptomatiques) et la mortalité toutes causes confondues. Le dabigatran 220 mg s’est avéré non inférieur à l’énoxaparine pour ce critère d’évaluation.
GRADE: LOW quality of evidence

Les taux de TVP symptomatique étaient faibles dans les deux groupes. Une seule étude a réalisé un test statistique pour ce critère d’évaluation. Aucune différence significative n’a été observée dans les taux de TVP symptomatique entre le dabigatran 220 mg et l’énoxaparine 40 mg.
GRADE: MODERATE quality of evidence

Aucune différence significative n’a été observée dans les taux d’événements hémorragiques majeurs.
GRADE: MODERATE quality of evidence

Les taux de saignements non majeurs cliniquement significatifs et de saignements mineurs ont été rapportés, mais pas testés sur le plan statistique.
GRADE: Sans objet.
Dabigatran 150 mg versus enoxaparin 40mg/d for 28-35 days for the prevention of VTE after hip arthroplasty

Bibliography: Eriksson 2007 RE-NOVATE I(85)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>No. of participants (studies) Follow-up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>2336 (1 study) 3 months</td>
<td>0.3% vs 0% NT</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Total VTE + all cause mortality (venographic or symptomatic) (PO)</td>
<td>2336 (1 study) 3 months</td>
<td>8.6% vs 6.7% ARD= 1.9% (95%CI -0.6% to 4.4%) P for non-inferiority : < 0.0001</td>
<td>⊕⊕⊕⊝ LOW</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>2336 (1 study) 3 months</td>
<td>0.8% vs 0.1% NT</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2336 (1 study) 3 months</td>
<td>1.3% vs 1.6% P=0.60; NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
</tbody>
</table>

Un RCT a comparé le dabigatran 150 mg à l’énoxaparine 40 mg/j pour la prévention de la TEV après une arthroplastie totale de la hanche. La durée du traitement était de 28 à 35 jours. Il s’agissait d’une étude de non-infériorité.

Les taux de mortalité étaient faibles dans les deux groupes. Aucun test statistique n’a été réalisé.
GRADE: Sans objet.

Le critère d’évaluation primaire était un composite incluant tous les événements thromboemboliques veineux (symptomatiques et asymptomatiques) et la mortalité toutes causes confondues. Le dabigatran 150 mg s’est avéré non inférieur à l’énoxaparine pour ce critère d’évaluation.
GRADE: LOW quality of evidence

Les taux de TVP symptomatique étaient faibles dans les deux groupes. Aucun test statistique n’a été réalisé.
GRADE: Sans objet.

Aucune différence significative n’a été observée dans les taux d'événements hémorragiques majeurs.
GRADE: MODERATE quality of evidence

Les taux de saignements non majeurs cliniquement significatifs et de saignements mineurs ont été rapportés, mais pas testés sur le plan statistique.
GRADE: Sans objet.
5.3.3 Apixaban versus énoxaparine dans l’arthroplastie élective de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Nº of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>5407 (1 study) 35d treatment</td>
<td>Treatment: 0.1% vs <0.1% No statistical test</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Composite of asymptomatic or symptomatic DVT, nonfatal PE, or death from any cause during the treatment period (PO)</td>
<td>5407 (1 study) 35d</td>
<td>1.4% vs 3.9% RR=0.36 (95%CI 0.22 to 0.54) SS, p<0.001 for superiority, in favour of apixaban</td>
<td>⊕⊕○LOW Study quality: -1 no ITT and <80% FU in efficacy analysis Consistency: NA Directness: -1 asymptomatic DVT included in composite outcome Imprecision: OK</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>5407 (1 study) 35d</td>
<td>Treatment: <0.1% vs 0.4% No statistical test</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PE</td>
<td>5407 (1 study) 35d</td>
<td>Treatment: <0.1% vs 0.2% No statistical test</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>5407 (1 study) 2 days after last dose</td>
<td>0.8% vs 0.7% ARR=0.10 (95% CI -0.3 to 0.6), NS</td>
<td>⊕⊕⊕HIGH Study quality: OK Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Any bleeding</td>
<td>5407 (1 study) 2 days after last dose</td>
<td>11.7% vs 12.6% ARR=-0.9 (95% CI -2.6 to 0.9), NS</td>
<td>⊕⊕⊕HIGH Study quality: OK Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>

Cette étude de non-infériorité comparait un traitement de 35 jours par apixaban 2 x 2.5 mg/j à un traitement de 35 jours par énoxaparine 40 mg/j pour la prévention de la TEV après une chirurgie de la hanche. En cas de non-infériorité, un test de supériorité était également réalisé pour les critères d’évaluation de l’efficacité.

Les taux d’événements relatifs à la mortalité, l’EP et la TVP symptomatique étaient faibles et aucun test statistique n’a été rapporté pour ces critères.

GRADE: sans objet

Le critère d’évaluation primaire était un composite incluant la TVP asymptomatique, la TVP symptomatique, l’EP non fatale et le décès toutes causes confondues, avec un taux d’événements inférieur sous le traitement de 35 jours par apixaban 2 x 2,5 mg/j que pendant le traitement de 35 jours par énoxaparine 40 mg/j.

GRADE: LOW quality of evidence
Aucune différence statistiquement significative n’a été observée dans les taux de saignements majeurs entre le traitement de 35 jours par apixaban 2 x 2,5 mg/j et le traitement de 35 jours par énoxaparine 40 mg/j.

GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n’a été observée dans les taux de tout saignement entre le traitement de 35 jours par apixaban 2 x 2,5 mg/j et le traitement de 35 jours par énoxaparine 40 mg/j.

GRADE: HIGH quality of evidence
5.3.4 Rivaroxaban versus énoxaparine dans l’arthroplastie élective de la hanche

Rivaroxaban 10 mg versus enoxaparin 40 mg for 35 days for thromboprophylaxis after hip arthroplasty

Bibliography: Eriksson 2008 RECORD1(88)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>4541 (1 study) 35 d</td>
<td>0.3% vs 0.3% ARR: 0.0 (95% CI –0.4 to 0.4) NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 >30% exclusions, no ITT, non-inferiority trial Consistency: NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>DVT (symptomatic or asymptomatic), nonfatal PE and death from any cause (PO)</td>
<td>4541 (1 study) 35 d</td>
<td>Non-inferiority 0.8% vs 3.4% ARR 2.5% (95%CI 1.5 to 3.5) Rivaroxaban non-inferior to enoxaparin Superiority 1.1% vs 3.7% ARR: 2.6% (95% CI 1.5 to 3.7) SS in favour of rivaroxaban</td>
<td>⊕⊕⊝⊝ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 >30% exclusions, no ITT, non-inferiority trial Consistency: OK Directness: -1 asymptomatic vte in composite Imprecision: OK</td>
</tr>
<tr>
<td>Nonfatal PE</td>
<td></td>
<td>0.3% vs 0.1% ARR: 0.2% (95% CI–0.1 to 0.6) NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 Consistency: NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Symptomatic VTE</td>
<td>4541 (1 study) 35 d</td>
<td>0.3% vs 0.5% ARR: –0.2% (95% CI–0.6 to 0.1) NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: non-inferiority trial, secondary outcome Consistency: NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>4541 (1 study) 35 d</td>
<td>0.3% vs 0.1% NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: non-inferiority trial, secondary outcome Consistency: NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Any bleeding</td>
<td>4541 (1 study) 35 d</td>
<td>6.0% vs 5.9% NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: non-inferiority trial, secondary outcome Consistency: NA Directness:OK Imprecision:OK</td>
</tr>
</tbody>
</table>

Ce RCT compare le rivaroxaban 10 mg à l’énoxaparine 40 mg par jour dans la thromboprophylaxie après une arthroplastie de la hanche. L’étude est conçue comme un essai de non-inériorité, un test de supériorité étant prévu si la non-inériorité est prouvée. Les deux traitements ont été administrés pendant 35 jours.
Les taux de mortalité sous traitement étaient faibles et ne différaient pas significativement entre les deux groupes de traitement.

GRADE: MODERATE quality of evidence

Le critère d’évaluation primaire pour cette étude est un critère composite incluant la TVP symptomatique et asymptomatique, l’EP non fatale et le décès toutes causes confondues. La non-infériorité du rivaroxaban a été prouvée dans un premier temps, puis, dans une analyse ultérieure, le rivaroxaban s’est même avéré supérieur à l’énoxaparine pour ce critère d’évaluation. Toutefois, les taux d’exclusion étaient très élevés, principalement en raison du manque de tests diagnostiques pour la TVP asymptomatique.

GRADE: LOW quality of evidence

Aucune différence significative n’a été observée dans les taux d’embolie pulmonaire non fatale. De même, il n’y avait aucune différence significative dans les TVP symptomatiques observées.

GRADE: MODERATE quality of evidence

Aucune différence significative n’a été observée au niveau des événements hémorragiques majeurs ou de tout événement hémorragique.

GRADE: MODERATE quality of evidence
Dans cette étude, un traitement prolongé par rivaroxaban oral (10 mg/j) pendant 31 à 39 jours a été comparé à un traitement à court terme par énoxaparine sous-cutanée (40 mg/j) pendant 10 à 14 jours pour la prévention d'événements thromboemboliques veineux chez des patients subissant une...
chirurgie de la hanche. Compte tenu de la différence de durée entre le traitement par rivaroxaban et celui par énoxaparine, aucune conclusion ne peut être formulée concernant la supériorité intrinsèque de l'un de ces deux médicaments.

Aucune différence statistiquement significative de la mortalité n'a été observée entre le traitement prolongé par rivaroxaban oral et le traitement à court terme par énoxaparine sous-cutanée.

GRADE: LOW quality of evidence

Le critère d'évaluation primaire était un critère composite incluant la TVP symptomatique, la TVP asymptomatique, l'EP non fatale et le décès toutes causes confondues, avec un taux d'événements inférieur après un traitement prolongé par rivaroxaban oral comparé au traitement à court terme par énoxaparine sous-cutanée.

GRADE: VERY LOW quality of evidence

Aucune différence statistiquement significative du taux d'EP non fatale n'a été observée entre le traitement prolongé par rivaroxaban oral et le traitement à court terme par énoxaparine sous-cutanée.

GRADE: LOW quality of evidence

L'incidence de TEV symptomatique était plus faible après un traitement prolongé par rivaroxaban oral qu'après un traitement à court terme par énoxaparine sous-cutanée.

GRADE: LOW quality of evidence

Aucun test statistique n'a été rapporté pour le critère de saignement majeur, qui est survenu chez moins de 0,1 % des patients.

GRADE: sans objet

Aucune différence statistiquement significative du taux de saignements sous traitement n'a été observée entre le traitement prolongé par rivaroxaban oral et le traitement à court terme par énoxaparine sous-cutanée.

GRADE: MODERATE quality of evidence
5.3.6 Aspirin versus dalteparine après un traitement initial de 10 jours par dalteparine pour la thromboprophylaxie prolongée dans l'arthroplastie é elective de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Nº of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>786 (1 study) Treatment 28d FU 90d</td>
<td>0% vs 0.3% NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: OK Consistency: NA Directness: OK Imprecision: -1 noninferiority trial with inadequate power, not clear if power was adequate for superiority test</td>
</tr>
<tr>
<td>VTE (symptomatic DVT or PE (PO))</td>
<td>786 (1 study) Treatment 28d FU 90d</td>
<td>0.3% vs 1.3% ARD= 1% (95% CI -0.5 to 2.2) NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: OK Consistency: NA Directness: OK Imprecision: -1</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>786 (1 study) Treatment 28d FU 90d</td>
<td>0% vs. 0.3% ARD=0.25% (95% CI 4.9 to 1.0) NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: OK Consistency: NA Directness: OK Imprecision: -1</td>
</tr>
<tr>
<td>Clinically significant non-major bleeding</td>
<td>786 (1 study) Treatment 28d FU 90d</td>
<td>0.5% vs. 1.0% ARD=0.48% (95% CI 1.0 to 2.0) NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: OK Consistency: NA Directness: OK Imprecision: -1</td>
</tr>
</tbody>
</table>

Dans cette étude de non-infériorité, l'aspirine administrée à une dose quotidienne de 8 mg a été comparée à la dalteparine 5000 U en prophylaxie prolongée chez des patients subissant une arthroplastie totale de la hanche, après un traitement initial de 10 jours par la dalteparine. Les deux traitements ont été administrés pendant 28 jours ; la durée du suivi pour tous les critères d'évaluation était de 90 jours et un test de supériorité a été rapporté. Aucune information n'a été fournie concernant le taux d'événements pulmonaires.

Aucune différence statistiquement significative n'a été observée dans le taux de mortalité entre les deux groupes.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée entre les deux groupes dans le taux d'événements thromboemboliques veineux (critère d'évaluation primaire). L'aspirine s'est avérée non inférieure à la dalteparine pour ce critère d'évaluation.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée dans le taux de saignements majeurs entre les deux groupes.
Aucune différence statistiquement significative n’a été observée entre les deux groupes dans le taux de saignements non majeurs cliniquement significatifs.

GRADE: MODERATE quality of evidence
5.4 Prophylaxie pharmacologique et mécanique versus prophylaxie mécanique dans la chirurgie élective de la hanche

5.4.1 HBPM + bas de compression graduée versus bas de compression graduée dans l’arthroplastie élective de la hanche

| LMWH + GCS versus GCS for thromboprophylaxis in patients with hip replacement surgery |
|---|---|---|---|
| **Outcomes** | **N° of participants (studies)** | **Results** | **Quality of the evidence (GRADE)** |
| | | | |
| DVT | 836 (4 studies) treatment 3-16d FU 8-17d | 26% vs 42% RR:0.62 (95% CI 0.51 to 0.76) SS in favour of LMWH+GCS Absolute effect: -17% (95% CI -23% to -10%) | ☣ ☣ ☣ ☣ MODERATE |
| Pulmonary embolism | 663 (3 studies) treatment 3-16d FU 8-17d | 0.5% vs 0.8% RR:0.65 (95% CI 0.10 to 4.37) NS | ☣ ☣ ☣ ☣ LOW |
| Major bleeding | 577 (2 studies) treatment 8-16d FU 8-17d | 1.8% vs 0.5% RR:2.02 (95% CI 0.28 to 14.72) NS | ☣ ☣ ☣ ☣ LOW |

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette méta-analyse réalisée par NICE 2010, une héparine de bas poids moléculaire combinée à des bas de compression graduée (BCG) est comparée à des bas de compression seuls chez des patients subissant une arthroplastie de la hanche. La méta-analyse incluait 4 RCT.

Le critère d’évaluation TVP a été contrôlé chez tous les patients à l’aide de techniques d’imagerie, de sorte que le taux rapporté de TVP inclut à la fois les TVP symptomatiques et asymptomatiques.

Les taux de TVP étaient plus faibles avec HBPM + BCG qu’avec les BCG seuls.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée dans le taux d’embolies pulmonaires.

GRADE: LOW quality of evidence

Aucune différence statistiquement significative n’a été observée dans le taux de saignements majeurs entre les deux groupes. Toutefois, l’intervalle de confiance est relativement large.

GRADE: LOW quality of evidence
5.5 Durée de la thromboprophylaxie dans l’arthroplastie élective de la hanche

5.5.1 HBPM après la sortie de l’hôpital versus placebo dans l’arthroplastie élective de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>n= 1093 (5 studies) 28-90 d</td>
<td></td>
<td>10.4% vs 25.5% RR: 0.41 (95% CI 0.31 to 0.55) SS in favour of LMWH Absolute effect: -14% (95% CI -19% to -9%)</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td>PE</td>
<td>n= 1817 (6 studies) 28-90 d</td>
<td></td>
<td>0% vs 0.55% RR:0.16 (95% CI 0.02 to 1.35) NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 1086 (3 studies) 35-90 d</td>
<td></td>
<td>0% vs 0.2% RR:0.32 (95 % CI 0.01 to 7.80) NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette méta-analyse, la prise d’une HBPM (durant quatre à six semaines) a été comparée à la prise d’une substance témoin après une thromboprophylaxie administrée à l’hôpital pendant une ou deux semaines chez des patients ayant subi une arthroplastie totale de la hanche.

Le critère d’évaluation TVP incluait les TVP symptomatiques et asymptomatiques survenues dans le cadre de 5 études. Une étude (Heit 2000) était conçue pour détecter uniquement les TVP symptomatiques, mais elle n’a pas été inclue dans la méta-analyse pour le critère d’évaluation « TVP ».

Malheureusement, le taux de mortalité n’a pas été rapporté.

Le nombre de patients souffrant de thrombose veineuse profonde était significativement plus faible dans le groupe recevant un traitement prolongé par HBPM que dans le groupe témoin.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée entre les deux groupes de traitement pour le critère d’évaluation « embolie pulmonaire ».

GRADE: MODERATE quality of evidence
Un seul cas de saignement majeur a été rapporté (dans le groupe témoin) dans tous les RCT. La différence n’était toutefois pas statistiquement significative.

GRADE: MODERATE quality of evidence
5.5.2 Warfarin en traitement prolongée versus warfarine jusqu’à la sortie de l’hôpital dans l’arthroplastie élective de la hanche

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>360 (1 study) 4w</td>
<td>0% vs 0%</td>
<td>Not applicable</td>
</tr>
<tr>
<td>VTE (PO)</td>
<td>360 (1 study) 4w</td>
<td>0.5% vs. 5.1%</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR=9.4 (95% CI 1.2 to 73.5)</td>
<td>Study quality: -1 not blind, prematurely terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In favour of warfarin extended duration</td>
<td>Consistency: NE, Directness: OK, Imprecision: OK</td>
</tr>
<tr>
<td>Proximal DVT</td>
<td>360 (1 study) 4w</td>
<td>0.5% vs. 4.5%</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PE</td>
<td>360 (1 study) 4w</td>
<td>0% vs. 0.6%</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>360 (1 study) 4w</td>
<td>0.5% vs. 0%</td>
<td>⊕⊕⊕⊝ ⊝ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR=2.87 (95% CI 0.12 to 69.99)</td>
<td>Study quality: -1 not blind, prematurely terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td>Consistency: NA, Directness: OK, Imprecision: -1 wide CI</td>
</tr>
</tbody>
</table>

Cette étude a comparé un traitement prolongé (4 semaines) par warfarine par rapport à un traitement par warfarine jusqu’à la sortie de l’hôpital (9 jours en moyenne) chez des patients subissant une chirurgie de la hanche. Cette étude, conçue comme un essai de non-infériorité, a été arrêtée prématurément en raison d’une supériorité statistiquement et cliniquement significative en faveur du traitement prolongé par warfarine par rapport à la prophylaxie à court terme.

Aucun test statistique n’a été réalisé pour les critères de TVP et d’EP séparément.

GRADE: sans objet

Il n'y avait pas de différence statistiquement significative de mortalité entre le traitement prolongé par warfarine et le traitement à court terme par warfarine.

GRADE: LOW quality of evidence

On a observé une incidence plus élevée du critère d’évaluation primaire (événements thromboemboliques veineux) avec le traitement à court terme par warfarine comparé au traitement prolongé par warfarine.

GRADE: MODERATE quality of evidence
Il n'y avait pas de différence statistiquement significative au niveau des saignements majeurs entre le traitement prolongé par warfarine et le traitement à court terme par warfarine.

GRADE: LOW quality of evidence
6 Résumé des résultats: la thromboprophylaxie dans l'arthroplastie élective du genou
6.1 Traitement pharmacologique versus placebo pour la thromboprophylaxie dans l’arthroplastie elective du genou

6.1.1 Résumé et conclusions. HBPM versus placebo ou absence de prophylaxie dans l’arthroplastie éelective du genou

<table>
<thead>
<tr>
<th>Enoxaparin versus placebo or no treatment for 5-14 days for thromboprophylaxis in elective knee surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography: Meta-analysis NICE 2010(54) selected 1 RCT: Leclerc 1992(102); subsequent RCT: Chin 2009(103)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>349 (2 studies) 14d-1m</td>
<td>Leclerc 1992 17% vs 58% RR: 0.29 (95% CI 0.16 to 0.52) SS Absolute effect: -41% (95%CI -56% to -26%)</td>
<td>☉☉☉☉ MODERATE Study quality: OK Consistency: OK Directness: -1 Asian patients 1 trial, different assessment DVT Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>131 (1 study) 14d</td>
<td>Leclerc 1992 0% vs 1.5% RR: 0.33 (95% CI 0.01 to 7.92) NS</td>
<td>☉☉☉☉ LOW Study quality: -1 only 1 small trial Consistency: NA Directness:OK Imprecision: -1 wide CI</td>
</tr>
<tr>
<td>All bleeding complications</td>
<td>220 (1 study) 1m</td>
<td>Chin 2009 8.2% vs 2.7% p(difference between 4 arms of RCT) =0.304 (No RR or CI reported)</td>
<td>☉☉☉☉ LOW Study quality: -1 only 1 trial Consistency: NA Directness:OK Imprecision: -1</td>
</tr>
</tbody>
</table>

Le NICE 2010 a identifié un seul RCT comparant l'HBPM (énoxaparine 30 mg 2x/j.) au placebo chez des patients subissant une arthroplastie éelective du genou ou une ostéotomie tibiale. Nous avons trouvé un RCT plus récent comparant l’énoxaparine 40 mg/j. à un témoin (étude de 4 bras : témoin vs BCG vs énoxaparine vs IPC).

Le critère d'évaluation TVP a été contrôlé chez tous les patients à l'aide de techniques d'imagerie, de sorte que le taux rapporté de TVP inclut à la fois les TVP symptomatiques et asymptomatiques.

Le taux de TVP est plus faible avec l'énoxaparine qu'avec le placebo.
GRADE: MODERATE quality of evidence
Aucune différence statistiquement significative n'a été observée dans le taux de saignements majeurs. Toutefois, l'intervalle de confiance est relativement large.

GRADE: LOW quality of evidence

Aucune différence statistiquement significative n'a été observée dans le taux de toutes les complications hémorragiques. Toutefois, la puissance de l'étude est probablement insuffisante pour ce critère d'évaluation.

GRADE: LOW quality of evidence
6.2 Traitement pharmacologique versus bas de compression graduée pour la thromboprophylaxie dans l’arthroplastie élective du genou

6.2.1 Énoxaparine versus bas de compression graduée dans l’arthroplastie élective du genou

Bibliography:
Chin 2009 (103)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (both symptomatic and asymptomatic)</td>
<td>220 (1 study) 1 month</td>
<td>6% vs 13% NT</td>
<td>Not applicable</td>
</tr>
<tr>
<td>All bleeding complications</td>
<td>220 (1 study) 1 month</td>
<td>8.2% vs 2.7%</td>
<td>p (difference between 4 arms of this study) =0.304</td>
</tr>
</tbody>
</table>

| Study quality: -1 only 1 trial Consistency: NA Directness:OK Imprecision: OK | ⊕⊕⊕⊝ ⊝LOW |

Un RCT a comparé une HBPM (énoxaparine 40 mg/j.) à des bas de compression graduée (BCG) chez des patients asiatiques. Il s'agissait d'une étude à 4 bras (témoin contre BCG contre énoxaparine contre IPC).

Le critère d'évaluation TVP a été contrôlé chez tous les patients à l'aide d'une échographie duplex, de sorte que le taux rapporté de TVP inclut à la fois les TVP symptomatiques et asymptomatiques.

Les taux de TVP étaient de 6% dans le groupe énoxaparine contre 13% dans le groupe BCG. Aucun test statistique n'a été réalisé pour cette comparaison spécifique.

GRADE: sans objet

Aucune différence statistiquement signifiative n'a été observée dans le taux de complications hémorragiques. Toutefois, la puissance de l'étude est probablement insuffisante pour ce critère d'évaluation.

GRADE: LOW quality of evidence
6.3 Traitement pharmacologique versus traitement pharmacologique pour la thromboprophylaxie dans l’arthroplastie élective du genou

6.3.1 Résumé et conclusions. Antagonistes de la vitamine K versus HBPM dans l’arthroplastie élective du genou

Dans cette méta-analyse réalisée par NICE 2010, des antagonistes de la vitamine K sont comparés à l’HBPM dans l’arthroplastie élective du genou. La méta-analyse incluait 3 RCT. Les posologies d’HBPM utilisées dans ces études étaient plus élevées que la dose prophylactique recommandée en Belgique.

Le critère d’évaluation TVP a été contrôlé chez tous les patients à l’aide de techniques d’imagerie, de sorte que le taux rapporté de TVP inclut à la fois les TVP symptomatiques et asymptomatiques.

Le taux de TVP est plus faible avec les HBPM qu’avec les AVK.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée au niveau de l’embolie pulmonaire entre les deux traitements.

GRADE: LOW quality of evidence

Le taux de saignements majeurs est plus élevé avec les HBPM qu'avec les AVK.

GRADE: MODERATE quality of evidence

Bibliography

Meta-analysis NICE 2010(54), included these RCTs: Fitzgerald 2001(104), Heit 1997(105), Leclerc 1996(106)

Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>1220 (3 studies) treatment 14 d or until discharge</td>
<td>45.0% vs 29.8% RR: 1.50 (95% CI 1.29 to 1.74) SS in favour of LMWH Absolute effect: 15% (95% CI 10% to 20%)</td>
<td>⊕⊕⊕MODERATE</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td>1220 (3 studies) treatment 14 d or until discharge</td>
<td>0.5% vs 0.3% RR: 1.39 (0.19 to 10.16) NS</td>
<td>⊕⊕⊕LOW</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1575 (3 studies) treatment 14 d or until discharge</td>
<td>2.8% vs 4.8% RR: 0.58 (95% CI 0.34 to 0.97) SS in favour of VKA Absolute effect: -2% (95% CI -4% to 1%)</td>
<td>⊕⊕⊕MODERATE</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette méta-analyse réalisée par NICE 2010, des antagonistes de la vitamine K sont comparés à l’HBPM dans l'arthroplastie élective du genou. La méta-analyse incluait 3 RCT. Les posologies d’HBPM utilisées dans ces études étaient plus élevées que la dose prophylactique recommandée en Belgique.

Le critère d'évaluation TVP a été contrôlé chez tous les patients à l'aide de techniques d'imagerie, de sorte que le taux rapporté de TVP inclut à la fois les TVP symptomatiques et asymptomatiques.

Le taux de TVP est plus faible avec les HBPM qu'avec les AVK.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée au niveau de l’embolie pulmonaire entre les deux traitements.

GRADE: LOW quality of evidence

Le taux de saignements majeurs est plus élevé avec les HBPM qu'avec les AVK.

GRADE: MODERATE quality of evidence
6.3.2 Dabigatran versus énoxaparine dans l’arthroplastie élective du genou

Dabigatran 220mg qd versus enoxaparin 40mg qd or 30mg bid in the prevention of venous thromboembolism in patients undergoing knee arthroplasty

Bibliography: Eriksson 2007 RE-MODEL(107), Re-Mobilize Writing Committee 2009(108)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total VTE events (symptomatic or venographic DVT or symptomatic PE or all-cause mortality) during treatment(PO)</td>
<td>4716 (2 studies) FU: 6-15d</td>
<td>RE-MODEL trial vs enoxaparin 40mg 36.4% vs 37.7% ARD=1.3% (95%CI -7.3 to 4.6) dabigatran 220mg is non-inferior to enoxaparin 40mg RE-MOBILIZE trial vs enoxaparin 2x30mg 31.1% vs 25.3% ARD= 5.8%(95%CI 0.8 to 10.8) SS in favour of enoxaparin dabigatran 220mg is inferior to enoxaparin 2x30mg</td>
<td>⊕⊕⊝⊝ LOW Study quality: -1 noninferiority trial, 73% in efficacy analysis and no ITT Consistency: NA Directness: -1 asymptomatic VTE in composite outcome Imprecision: OK</td>
</tr>
<tr>
<td>Major VTE and VTE-related mortality</td>
<td>4716 (2 studies) FU 3 months</td>
<td>RE-MODEL trial vs enoxaparin 40mg 2.6% vs 3.5% ARD=1.0 (95%CI -3.1 to 1.2) NS RE-MOBILIZE trial vs enoxaparin 2x30mg 3.4% vs 2.2% ARD=1.2% (95%CI -0.7 to 3.0) NS</td>
<td>⊕⊕⊝⊝ LOW Study quality: -1 noninferiority trial, 73% in efficacy analysis and no ITT Consistency: NA Directness: -1 asymptomatic VTE in composite outcome Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>4716 (2 studies) FU 3 months</td>
<td>RE-MODEL trial vs enoxaparin 40mg 1.5% vs 1.3%, NS RE-MOBILIZE trial vs enoxaparin 2x30mg 0.7% vs 1.4%, NT</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: OK Consistency: NA Directness: OK Imprecision: -1, no CI reported</td>
</tr>
<tr>
<td>Clinically relevant non-major bleeding</td>
<td>4716 (2 studies) FU 3 months</td>
<td>RE-MODEL trial vs enoxaparin 40mg 5.9% vs 5.3%, NT RE-MOBILIZE trial vs enoxaparin 2x30mg 3.4% vs 2.7%, NT</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Deux études de non-infériorité ont comparé le dabigatran à une dose quotidienne de 220 mg par jour à l’énoxaparine sous-cutanée 40 mg une fois par jour (Eriksson 2007 RE-MODEL) ou 30 mg 2x/j (RE-MOBILIZE 2009) dans la prévention de la thromboembolie veineuse (TEV) après une arthroplastie totale du genou. La durée du traitement oscillait entre 6 et 15 jours. Le suivi du critère d’évaluation primaire s’est effectué durant le traitement uniquement ; le suivi des critères d’évaluation secondaires a été assuré durant 3 mois. La mortalité n’a pas été rapportée comme critère d’évaluation séparé.

Concernant la différence entre le dabigatran et l’énoxaparine pour la prévention du critère de jugement composite associant les TEV totales et la mortalité sous traitement (critère d’évaluation primaire), les données obtenues étaient contradictoires.

Le dabigatran 220 mg s’est avéré non inférieur à l’énoxaparine 40 mg pour la prévention de ce critère d’évaluation composite.

GRADE: LOW quality of evidence

Le dabigatran 220 mg s’est avéré inférieur à l’énoxaparine 2x30 mg pour la prévention de ce critère d’évaluation composite.

GRADE: LOW quality of evidence

Il n’y avait pas de différence statistiquement significative entre le dabigatran 220 mg et les deux posologies d’énoxaparine pour le critère composite incluant les TEV majeures et la mortalité par TEV.

GRADE: LOW quality of evidence

Compte tenu des données statistiques insuffisantes, aucune conclusion ne peut être formulée concernant la différence entre le dabigatran et l’énoxaparine en termes de taux de saignements majeurs ou de saignements mineurs cliniquement significatifs.

GRADE: not applicable
Table: Outcomes of Dabigatran 150mg qd versus enoxaparin 40mg qd or 30mg bid in the prevention of venous thromboembolism in patients undergoing knee arthroplasty

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
</table>
| **Total VTE events (symptomatic or venographic DVT or symptomatic PE or all-cause mortality) during treatment(PO)** | 4716 (2 studies) FU: 6-15d | **RE-MODEL trial** vs enoxaparin 40mg
40.5% vs 37.7%
ARD: 2.8% (95% CI -3.1 to 8.7), dabigatran 220 is non-inferior to enoxaparin 40mg
RE-MOBILIZE trial vs enoxaparin 2x30mg
33.7% vs 25.3%
ARD=8.4% (95% CI 3.4 to 13.3)
SS in favour of enoxaparin dabigatran is inferior to enoxaparin 2x30mg | **VERYLOW**
Study quality: -1 noninferiority trial, 73% in efficacy analysis and no ITT
Consistency: OK when considered separately
Directness: -1 asymptomatic VTE in composite outcome
Imprecision: OK |
| **Major VTE and VTE-related mortality** | 4716 (2 studies) FU 3 months | **RE-MODEL trial** vs enoxaparin 40mg
3.8% vs 3.5%
ARD=0.3 (95% CI-2.0 to 2.6) NS
RE-MOBILIZE trial vs enoxaparin 2x30mg
3.0% vs 2.2%
ARD=0.8% (95% CI-0.9 to 2.5) NS | **LOW**
Study quality: -1 noninferiority trial, 73% in efficacy analysis and no ITT
Consistency: NA
Directness: -1 asymptomatic VTE in composite outcome
Imprecision: OK |
| **Major bleeding** | 4716 (2 studies) FU 3 months | **RE-MODEL trial** vs enoxaparin 40mg
1.3% vs 1.3%, NS
RE-MOBILIZE trial vs enoxaparin 2x30mg
0.8% vs 1.4%, NT | **MODERATE**
Study quality: OK
Consistency: NA
Directness: OK
Imprecision: -1, no CI reported in both studies,
Not applicable |
| **Clinically relevant non-major bleeding** | 4716 (2 studies) FU 3 months | **RE-MODEL trial** vs enoxaparin 40mg
6.8% vs 5.3%, NT
RE-MOBILIZE trial vs enoxaparin 2x30mg
3% vs 2.7%, NT | Not applicable |

Bibliography: Eriksson 2007 RE-MODEL(107), Re-Mobilize Writing Committee 2009(108)
Deux études de non-infériorité ont comparé le dabigatran à une dose quotidienne de 150 mg par jour à l’énoxaparine sous-cutanée 40 mg une fois par jour (Eriksson 2007 RE-MODEL) ou 30 mg 2x/j (RE-MOBILIZE 2009) dans la prévention de la thromboembolie veineuse (TEV) après une arthroplastie totale du genou. La durée du traitement oscillait entre 6 et 15 jours. Le suivi du critère d’évaluation primaire s’est effectué durant le traitement uniquement ; le suivi des critères d’évaluation secondaires a été assuré durant 3 mois. La mortalité n’a pas été rapportée comme critère d’évaluation séparé.

Concernant la différence entre le dabigatran 150 mg et l’énoxaparine pour la prévention du critère de jugement composite associant les TEV totales et la mortalité sous traitement (critère d’évaluation primaire), les données obtenues étaient contradictoires.

Le dabigatran 150 mg s’est avéré non inférieur à l’énoxaparine 40 mg pour la prévention de ce critère composite.

GRADE: LOW quality of evidence

Le dabigatran 220 mg s’est avéré inférieur à l’énoxaparine 2x30 mg pour la prévention de ce critère d’évaluation composite.

GRADE: LOW quality of evidence

Il n’y avait pas de différence statistiquement significative entre le dabigatran 150 mg et les deux posologies d’énoxaparine pour le critère composite incluant les TEV majeures et la mortalité par TEV.

GRADE: LOW quality of evidence

Compte tenu des données statistiques insuffisantes, aucune conclusion ne peut être formulée concernant la différence entre le dabigatran et l’énoxaparine en termes de taux de saignements majeurs ou de saignements mineurs cliniquement significatifs.

GRADE: not applicable
6.3.3 Apixaban versus énoxaparïne dans l’arthroplastie élective du genou

Apixaban 2.5 mg bid versus subcutaneous enoxaparin 30 mg bid or 40mg qd for the prevention of venous thromboembolism after total knee arthroplasty

Bibliography: Lassen 2009 ADVANCE-1(109), Lassen 2010 ADVANCE-2(110)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
</table>
| Mortality | 6252 (2 studies) | 10-14d | *Lassen 2010*
vs enoxaparin 40 mg
0.13% vs 0%, NT
Lassen 2009
vs enoxaparin 2x30mg
0.2% vs 0.2%, NT | Not applicable |
| Composite of any DVT, non-fatal PE, or death from any cause (PO) | 6252 | 10-14d | *Lassen 2010*
vs enoxaparin 40 mg
15.06% vs 24.37%
RR=0.62 (95% CI 0.51 to 0.74),
SS, one-sided p<0.0001 for non-inferiority and for superiority in favour of apixaban
Lassen 2009
vs enoxaparin 2x30mg
9.0% vs 8.8%
RR=1.02 (95% CI 0.78 to 1.32)
ARR=0.11 (95% CI -2.22 to 2.44)
P=0.06 for non-inferiority (non-inferiority criterion not met) | ★★★☆☆ LOW
Study quality: -1 noninferiority trial, 65% in efficacy analysis and ITT not clear
Consistency: NA
Directness: -1 asymptomatic DVT in composite outcome
Imprecision: OK |
| Major VTE (proximal symptomatic or asymptomatic DVT, nonfatal PE, or death related to VTE) | 6252 (2 studies) | 10-14d | *Lassen 2010*
vs enoxaparin 40 mg
1.09% vs 2.17%
RR=0.50 (95% CI 0.26 to 0.97),
SS, one-sided p for superiority=0.0186 in favour of apixaban
Lassen 2009
vs enoxaparin 2x30mg
not reported | ★★★☆☆ MODERATE
Study quality: OK
Consistency: NA
Directness: -1 asymptomatic DVT in composite outcome
Imprecision: OK |
| Symptomatic DVT | 6252 (2 studies) | 10-14d | *Lassen 2010*
vs enoxaparin 40 mg
during treatment
0.20% vs 0.46%, NT
Lassen 2009
vs enoxaparin 2x30mg
0.2% vs 0.4%, NT | Not applicable |
Deux études de non-infériorité ont comparé l’apixaban oral 2x2.5 mg par jour à l’énoxaparine sous-cutanée 40 mg une fois par jour (Lassen 2010) ou 30 mg 2x/j (Lassen 2009) dans la prévention de la thromboembolie veineuse (TEV) après une arthroplastie totale du genou. La durée du traitement oscillait entre 10 et 14 jours.

Aucune conclusion ne peut être formulée concernant la différence entre apixaban 2x2.5 mg et l’énoxaparine sous-cutanée 40 mg par jour au niveau du taux de mortalité ou des TVP symptomatiques au cours du traitement, en raison de l’insuffisance des données statistiques pour ces critères d’évaluation.

GRADE: not applicable

Aucune conclusion ne peut être formulée concernant la différence entre apixaban 2x2.5 mg et l’énoxaparine sous-cutanée 2x30 mg par jour au niveau du taux de mortalité ou des TVP symptomatiques au cours du traitement Les données statistiques étaient insuffisantes pour ces critères d’évaluation.

GRADE: not applicable

L’apixaban 2x2.5 mg était supérieur à l’énoxaparine 40 mg pour le critère de jugement composite associant toute thrombose veineuse profonde (TVP), l’embolie pulmonaire (EP) non fatale ou le décès toutes causes confondues au cours du traitement.

GRADE: LOW quality of evidence
Pour le critère composite associant toute thrombose veineuse profonde (TVP), l'embolie pulmonaire (EP) non fatale ou le décès toutes causes confondues au cours du traitement, le critère pour la non-infériorité de l'apixaban 2x2.5 mg comparé à l'énoxaparine 2x30 mg n'a pas été satisfait.
GRADE: LOW quality of evidence

L'apixaban 2x2.5 mg était supérieur à l'énoxaparine 40 mg pour le critère de jugement composite associant la TVP asymptomatique ou symptomatique proximale, l'embolie pulmonaire (EP) non fatale ou le décès par TEV.
GRADE: MODERATE quality of evidence

Aucune conclusion ne peut être formulée concernant la différence entre apixaban 2x2.5 mg et l'énoxaparine sous-cutanée 2x30 mg par jour pour le critère de jugement composite associant la TVP asymptomatique ou symptomatique proximale, l'embolie pulmonaire (EP) non fatale ou le décès par TEV. Ce critère d'évaluation n'a pas été rapporté.
GRADE: not applicable

Aucune différence statistiquement significative n'a été observée entre apixaban 2x2.5 mg par jour et l'énoxaparine sous-cutanée 40 mg par jour au niveau du taux de saignements majeurs au cours du traitement.
GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n'a été observée entre apixaban 2x2,5 mg par jour et l'énoxaparine sous-cutanée 2x30 mg par jour au niveau du taux de saignements majeurs au cours du traitement.
GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n'a été observée entre apixaban 2x2,5 mg par jour et l'énoxaparine sous-cutanée 40 mg par jour au niveau du taux de saignements non majeurs cliniquement significatifs au cours du traitement.
GRADE: HIGH quality of evidence

Une différence limite statistiquement significative a été observée, en faveur de l'apixaban, entre apixaban 2x2,5 mg par jour et l'énoxaparine sous-cutanée 2x30 mg par jour au niveau du taux de saignements non majeurs cliniquement significatifs au cours du traitement.
GRADE: HIGH quality of evidence
6.3.4 Rivaroxaban versus énoxaparin dans l’arthroplastie élective du genou

Rivaroxaban 10 mg/d versus enoxaparin 30 mg bid or 40 mg qd for the prevention of venous thromboembolism after total knee arthroplasty

Bibliography: Turpie2009 RECORD 4(111), Lassen 2008 RECORD 3(112)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Nº of participants (studies) Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>5679 (2 studies) up to day 17 + 30-35d follow-up after treatment</td>
<td>Turpie 2009 vs enoxaparin 2x30 mg during treatment: 0.3% vs 0.2% ARR=-0.06% (95% CI -0.35 to 0.50), NS, p=0.745</td>
<td>⊕⊕⊕⊕ HIGH Study quality: OK Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Composite of any DVT, non-fatal PE, or death from any cause (PO)</td>
<td>5679 (2 studies) up to day 17</td>
<td>Turpie 2009 vs enoxaparin 2x30 mg up to day 17: 6.9% vs 10.1% ARR=-3.19% (95% CI -5.67 to -0.71), SS, p for superiority=0.012 in favour of rivaroxaban</td>
<td>⊕⊕⊝⊝ LOW Study quality: -1 noninferiority trial, 55% in efficacy analysis and no ITT Consistency: NA Directness: -1 asymptomatic DVT in composite outcome Imprecision: OK</td>
</tr>
<tr>
<td>Major VTE (proximal DVT, nonfatal PE, or death related to VTE)</td>
<td>5679 (2 studies) up to day 17</td>
<td>Turpie 2009 vs enoxaparin 2x30 mg during treatment: 1.2% vs 2.0% ARR=-0.80 (95% CI -1.82 to 2.0), NS, p for superiority=0.124</td>
<td>⊕⊕⊕♦️ MODERATE Study quality: -1 noninferiority trial, 71% in modified ITT analysis Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>
Symptomatic VTE

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparison</th>
<th>Event Type</th>
<th>Event Rate</th>
<th>ARR</th>
<th>CI</th>
<th>Conclusion</th>
<th>Quality</th>
<th>Consistency</th>
<th>Directness</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpie 2009</td>
<td>vs enoxaparin 2x30 mg</td>
<td>during treatment</td>
<td>0.7% vs 1.2%</td>
<td>-0.47% (95% CI -1.16 to 0.23)</td>
<td>NS, p=0.187</td>
<td>during follow-up after treatment: 0.2% vs 0.2%, NS</td>
<td>HIGH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Lassen 2008</td>
<td>vs enoxaparin 40mg</td>
<td>Up to day 17</td>
<td>0.7% vs 2.0%</td>
<td>-1.3% (95% CI -2.2 to -0.4), SS, p=0.005 in favour of rivaroxaban</td>
<td>During follow-up after treatment: 0.4% vs 0.2%, ARR=0.2% (95% CI -0.3 to 0.6), NS, p=0.44</td>
<td>HIGH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Deux études de non-infériorité ont comparé le rivaroxaban 10 mg par jour à l'énoxaparine sous-cutanée 2x30 mg (Turpie 2009) ou 40mg une fois par jour (Lassen 2008) dans la prévention de la thromboembolie veineuse (TEV) après une arthroplastie totale du genou. La durée du traitement oscillait entre 10 et 14 jours ; à l’exception d’un critère d’évaluation, tous les critères ont été rapportés pour cette période uniquement. Le taux de thromboembolies veineuses a également été rapporté au cours de la période de suivi dans les deux études. Une étude (Lassen 2008) a également rapporté le taux de mortalité au cours de la période de suivi. Dans l’étude comparant le rivaroxaban à l’énoxaparine 2x30 mg, seulement 55% des patients ont été inclus dans l’analyse de non-infériorité (per protocol) pour le critère d’évaluation primaire ; les résultats de l’analyse de supériorité sont

Major bleeding

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparison</th>
<th>Event Type</th>
<th>Event Rate</th>
<th>Conclusion</th>
<th>Quality</th>
<th>Consistency</th>
<th>Directness</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpie 2009</td>
<td>vs enoxaparin 2x30 mg</td>
<td>0.7% vs 0.3%</td>
<td>NS, p=0.11</td>
<td>HIGH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Lassen 2008</td>
<td>vs enoxaparin 40mg</td>
<td>0.6% vs 0.5%</td>
<td>NS, p=0.77</td>
<td>HIGH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Clinically relevant non-major bleeding

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparison</th>
<th>Event Type</th>
<th>Event Rate</th>
<th>Conclusion</th>
<th>Quality</th>
<th>Consistency</th>
<th>Directness</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpie 2009</td>
<td>vs enoxaparin 2x30 mg</td>
<td>2.6% vs. 2.0%, NS</td>
<td>HIGH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Lassen 2008</td>
<td>vs enoxaparin 40mg</td>
<td>2.7% vs 2.3%, NT</td>
<td>HIGH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Deux études de non-infériorité ont comparé le rivaroxaban 10 mg par jour à l'énoxaparine sous-cutanée 2x30 mg (Turpie 2009) ou 40mg une fois par jour (Lassen 2008) dans la prévention de la thromboembolie veineuse (TEV) après une arthroplastie totale du genou. La durée du traitement oscillait entre 10 et 14 jours ; à l’exception d’un critère d’évaluation, tous les critères ont été rapportés pour cette période uniquement. Le taux de thromboembolies veineuses a également été rapporté au cours de la période de suivi dans les deux études. Une étude (Lassen 2008) a également rapporté le taux de mortalité au cours de la période de suivi. Dans l’étude comparant le rivaroxaban à l’énoxaparine 2x30 mg, seulement 55% des patients ont été inclus dans l’analyse de non-infériorité (per protocol) pour le critère d’évaluation primaire ; les résultats de l’analyse de supériorité sont
présentés dans notre tableau (61% des patients inclus dans l'analyse modifiée en intention de traiter).

Aucune différence statistiquement significative n’a été observée dans le taux de mortalité durant le traitement entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 2x30 mg par jour.

GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n’a été observée dans le taux de mortalité durant le traitement entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 40 mg par jour.

GRADE: HIGH quality of evidence

Une différence à la limite de la signification a été observée dans le taux de mortalité au cours de la période de suivi entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 40 mg par jour.

GRADE: HIGH quality of evidence

Le rivaroxaban 10 mg par jour s’est avéré supérieur à l’énoxaparine sous-cutanée 2x30 mg par jour pour le critère d’évaluation primaire composite incluant toute TVP, l’EP non fatale ou le décès toutes causes confondues au cours du traitement.

GRADE: LOW quality of evidence

Le rivaroxaban 10 mg par jour s’est avéré supérieur à l’énoxaparine sous-cutanée 40 mg par jour pour le critère d’évaluation primaire composite incluant toute TVP, l’EP non fatale ou le décès toutes causes confondues au cours du traitement.

GRADE: LOW quality of evidence

Aucune différence statistiquement significative n’a été observée entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 2x30 mg par jour pour le critère de jugement composite incluant les TEV majeures (TVP proximale, EP non fatale ou décès par TEV) au cours du traitement.

GRADE: MODERATE quality of evidence

Le rivaroxaban 10 mg par jour s’est avéré supérieur à l’énoxaparine sous-cutanée 40 mg par jour pour le critère de jugement composite incluant les TEV majeures (TVP proximale, EP non fatale ou décès par TEV) au cours du traitement.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée dans le taux de TEV symptomatiques durant le traitement ou la période de suivi entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 2x30 mg par jour.

GRADE: HIGH quality of evidence

Le rivaroxaban 10 mg par jour s’est avéré supérieur à l’énoxaparine sous-cutanée 40 mg par jour au niveau des taux de TEV symptomatiques durant le traitement, mais pas durant le suivi.

GRADE: HIGH quality of evidence
Aucune différence statistiquement significative n’a été observée entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 2x30 mg par jour dans le taux de saignements majeurs au cours du traitement.
GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n’a été observée entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 40 mg par jour dans le taux de saignements majeurs au cours du traitement.
GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n’a été observée entre le rivaroxaban 10 mg par jour et l’énoxaparine sous-cutanée 2x30 mg par jour dans le taux de saignements mineurs cliniquement significatifs au cours du traitement.
GRADE: HIGH quality of evidence

Compte tenu des données statistiques insuffisantes, aucune conclusion ne peut être formulée concernant la différence entre le rivaroxaban et l’énoxaparine 40 mg pour le taux de saignements mineurs cliniquement significatifs.
GRADE: not applicable
6.4 Traitement pharmacologique + bas de compression graduée versus bas de compression graduée pour la thromboprophylaxie dans l’arthroplastie élective du genou

6.4.1 Énoxaparine + bas de compression graduée versus bas de compression graduée dans l’arthroplastie élective du genou

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (symptomatic or asymptomatic)</td>
<td>190</td>
<td>35.1% vs 60.8% p=0.002 (no RR or CI reported)</td>
<td>⊕⊕⊕MODERATE Study quality: 1 no ITT and 77% in efficacy analysis Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>190</td>
<td>1.4% vs 1.2% NS (no RR or CI reported)</td>
<td>⊕⊕⊝LOW Study quality: 1 no ITT and 77% in efficacy analysis Consistency: NA Directness: OK Imprecision: 1 low rates</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>190</td>
<td>1.1% vs 4.5% NS (no RR or CI reported)</td>
<td>⊕⊕⊝LOW Study quality: no ITT and 93% in analysis, only 1 trial Consistency: NA Directness: OK Imprecision: 1 low rates</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>190</td>
<td>6.6% vs 4.5% NS (no RR or CI reported)</td>
<td>⊕⊕⊝LOW Study quality: no ITT and 93% in efficacy analysis, only 1 trial Consistency: NA Directness: OK Imprecision: 1 low rates</td>
</tr>
</tbody>
</table>

À partir d’une revue systématique de NICE 2010, nous avons sélectionné 1 RCT qui comparait l’association HBPM + BCG avec des BCG chez des patients subissant une arthroplastie totale du genou. Il s’agissait d’une étude menée chez des patients japonais, qui comparait 4 traitements (énoxaparine 20 mg/j., énoxaparine 40 mg/j. ou énoxaparine 20 mg 2x/j., tous + BCG, contre BCG + injection de placebo). Nous rapportons uniquement la comparaison entre l’association énoxaparine 40 mg/j. + BCG et les BCG seuls.

Les patients inclus dans cette étude ont été contrôlés pour le critère d’évaluation TVP à l’aide de techniques d’imagerie, de sorte que le taux de TVP rapporté inclut à la fois les TVP symptomatiques et asymptomatiques.

Le taux de TVP est plus faible avec l’association énoxaparine 40 mg/j. + BCG qu’avec les BCG seuls.
GRADE: MODERATE quality of evidence
Aucune différence statistiquement significative n'a été observée dans les taux d'embolies pulmonaires.

GRADE: LOW quality of evidence

Aucune différence statistiquement significative n'a été observée dans les taux de saignements majeurs et mineurs.

GRADE: LOW quality of evidence
6.5 Durée de la thromboprophylaxie dans l’arthroplastie élective du genou

6.5.1 HBPM ou HNF après la sortie de l’hôpital versus absence de thromboprophylaxie dans l’arthroplastie élective du genou

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite of proximal and symptomatic DVT, non-fatal symptomatic PE, major bleeding, HIT or all-cause death</td>
<td>n= 857 (1 study) 35 +/- 5 days</td>
<td>Barrellier 2010 (LMWH or UFH) Short 4.0% vs Extended 2.4% ARD: 1.7% (90% CI -0.3 to 3.7) NS non-inferiority of short treatment was not demonstrated</td>
<td>⊕⊕⊕⊝ LOW Study quality: -1, non-inferiority and no ITT or PP analysis Consistency: NA Directness: -1, composite endpoint Imprecision: OK</td>
</tr>
<tr>
<td>DVT (asymptomatic and symptomatic)</td>
<td>n= 1295 (2 studies) treat. 27d FU 3m 35 +/- 5d</td>
<td>Comp 2001 (LMWH) Extended 17.5% vs Short 20.8% RR= 0.84 (95% CI 0.57 to 1.24) NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: -1, non-inferiority, different randomization methods Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>PE</td>
<td>n= 438 (1 study) treat. 27d FU 3m</td>
<td>Comp 2001 Extended 0 vs short (0.9%) OR: 0.14 (95% CI 0.01 to 2.2) NS</td>
<td>⊕⊕⊕⊝ MODERATE Study quality: OK Consistency: OK Directness: OK Imprecision: -1 wide CI</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 1295 (2 studies) FU 3m</td>
<td>Comp 2001 Extended: 0 vs short (0.05%) OR: 0.14 (95% CI 0.003–6.95) NS Barrellier 2010: “The rate of major bleeding was less than 1% and similar in the two study groups.”</td>
<td>⊕⊕⊝ MODERATE Study quality: OK Consistency: OK Directness: OK Imprecision: -1 wide CI</td>
</tr>
</tbody>
</table>

Nous avons sélectionné 1 RCT (Comp 2001) issu d’une revue systématique (Sobieraj 2012) et 1 étude récente de non-inférriorité (Barrelier 2010) qui ont comparé le traitement prolongé par HBPM ou par HNF (après la sortie de l’hôpital) au traitement de durée standard (dans la thromboprophylaxie hospitalière) chez les patients ayant subi une arthroplastie totale du genou.
Les deux études ont contrôlé les patients pour le critère d'évaluation « TVP » à un moment spécifique après la chirurgie. Le taux de TVP rapporté inclut donc à la fois les TVP symptomatiques et asymptomatiques.

Dans une étude (Barrelier 2010), aucune différence statistiquement significative n’a été observée entre les schémas de thromboprophylaxie pour le critère d’évaluation composite de TVP proximale et symptomatique, d’EP symptomatique non fatale, de saignement majeur, de thrombocytopénie induite par l’héparine ou de mortalité toutes causes confondues ; la non-infériorité n’a pas été prouvée.

GRADE: LOW quality of evidence

L’étude de plus grande envergure (Barrelier 2010) a mis en évidence une différence statistiquement significative dans la thrombose veineuse profonde entre les deux groupes de traitement en faveur du traitement prolongé par HBPM/héparine non fractionnée. Dans l’étude plus petite (Comp 2001), cette différence n’était pas statistiquement significative.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée dans l’embolie pulmonaire entre les différents groupes de traitement, mais la puissance de l’étude était probablement insuffisante pour détecter une différence.

GRADE: MODERATE quality of evidence

Les taux de saignements majeurs étaient faibles. La différence entre les groupes de traitement n’était pas statistiquement significative.

GRADE: MODERATE quality of evidence
6.6 Méta-analyses comparant les nouveaux anticoagulants à l’énoxaparine dans l’arthroplastie de la hanche ou du genou

De nombreuses méta-analyses qui comparent les nouveaux anticoagulants à d'autres traitements en prévention d'une TEV ont été et sont encore publiées. Les problèmes méthodologiques dans ces publications sont principalement la sommation d'études hétérogènes : sont mis en commun des RCTs avec des indications différentes de thromboprophylaxie, différentes interventions ou comparateurs, ou également différentes durées de traitement ou différents dosages. Les études incluses sont généralement des études de non-infériorité. En raison de ces objections méthodologiques, nous ne rapportons ces méta-analyses pas en détail.

Nous discuterons brièvement de 5 méta-analyses récentes, qui reposent sur une recherche systématique adéquate, mais qui présentent bon nombre des limites méthodologiques mentionnées. Les conclusions de ces méta-analyses sont :

- Selon 3 méta-analyses, en cas d'arthroplastie de la hanche ou du genou, il n'y a aucune différence statistiquement significative entre le dabigatran et l’énoxaparine en termes de survenue de TEV (symptomatique) et de saignement (115-117).
- Selon 1 méta-analyse, en cas d'arthroplastie de la hanche ou du genou, le rivaroxaban est supérieur à l’énoxaparine en prévention de TEV symptomatique (115), et selon 2 méta-analyses, supérieur en prévention de toutes les TEV(117, 118). 2 meta-analyses (116, 119) ont jugé le rivaroxaban supérieur par rapport à l’énoxaparine en prévention de TVP.
- La plupart des méta-analyses rapportent un risque plus élevé de critères hémorragiques avec le rivaroxaban (saignement cliniquement pertinent (115), saignement cliniquement pertinent + hémorragie majeure (119), hémorragie majeure (116)), alors que certaines n’ont trouvé aucune différence statistiquement significative (117, 118).

Selon 1 méta-analyse, en cas d'arthroplastie de la hanche ou du genou, l’apixaban expose à un risque de TEV symptomatique similaire à celui de l’énoxaparine et à un moindre risque de saignement cliniquement pertinent (115). Une autre méta-analyse (119) montre par ailleurs un moindre risque de TVP avec l’apixaban, ainsi qu’un moindre risque du nombre total de saignements par rapport à l’énoxaparine.

La qualité de niveau de preuve de ces méta-analyses peut être considérée comme faible à très faible.
7 Résumé des résultats: la thromboprophylaxie dans la chirurgie orthopédique mineure ou le port du plâtre
7.1 La thromboprophylaxie dans l’arthroscopie du genou

7.1.1 HBPM versus absence de thromboprophylaxie dans l’arthroscopie du genou

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTE</td>
<td>527 (4 studies)</td>
<td>4-30d</td>
<td>RR = 0.16 (95%CI 0.05 to 0.52)</td>
<td>SS in favour of LMWH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 (not blind, no ITT + FU not reported in 2 studies)</td>
</tr>
<tr>
<td>Clinical VTE</td>
<td>529 (4 studies)</td>
<td>4-30d</td>
<td>RR = 0.42 (95%CI 0.06 to 3.14)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 (not blind, no ITT + FU not reported in 2 studies)</td>
</tr>
<tr>
<td>Minor bleedings</td>
<td>527 (4 studies)</td>
<td>4-30d</td>
<td>RR = 2.23 (95%CI 0.99 to 4.99)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 (not blind, no ITT + FU not reported in 2 studies)</td>
</tr>
<tr>
<td>Adverse events</td>
<td>527 (4 studies)</td>
<td>4-30d</td>
<td>RR = 1.92 (95%CI 0.97 to 3.80)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 (not blind, no ITT + FU not reported in 2 studies)</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette méta-analyse de 4 études, le traitement par héparine de bas poids moléculaire (HBPM) a été comparé à l’absence de traitement pour la prévention de la thromboembolie veineuse chez des adultes subissant une arthroscopie du genou. La durée du suivi dans ces études oscillait entre 4 et 30 jours.

Aucune information n’était disponible sur les critères de mortalité, d’embolie pulmonaire et de saignements majeurs.

Le traitement par HBPM a induit un plus faible taux d’événements thromboemboliques veineux (TEV) que l’absence de traitement.

GRADE: MODERATE quality of evidence
Aucune différence statistiquement significative n’a été observée dans le taux de TEV cliniques entre le groupe HBPM et le groupe n’ayant reçu aucun traitement.
GRADE: LOW quality of evidence

Aucune différence statistiquement significative n’a été observée dans le taux de saignements mineurs entre le groupe HBPM et le groupe sans traitement.
GRADE: LOW quality of evidence

Aucune différence statistiquement significative n’a été observée dans le taux d’effets indésirables entre le groupe HBPM et le groupe sans traitement.
GRADE: LOW quality of evidence

7.1.2 Bas de compression graduée versus HBPM dans l’arthroscopie du genou

Graduated compression stockings versus LMWH in patients undergoing knee arthroscopy

Bibliography: Camporese 2008(125)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>No° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Follow up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>1317 (1 study) 3 months</td>
<td>0% vs 0% p-value not applicable</td>
<td>⊕⊕⊕MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistency: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directness: -1 not a primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>outcome</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision: OK</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic proximal DVT, symptomatic VTE and all cause mortality (PO) at 3 months</td>
<td>1317 (1 study) 3 months</td>
<td>3.2% vs 0.9% ARD: 2.3 (95%CI 0.7 to 4.0) percentage points SS in favour of LMWH</td>
<td>⊕⊕⊕MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistency: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directness: -1 composite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>outcome includes asymptomatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision: OK</td>
<td></td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>1317 (1 study) 3 months</td>
<td>1.8% vs 0.3% SS in favour of LMWH</td>
<td>⊕⊕⊕⊝HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistency: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directness: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision: OK</td>
<td></td>
</tr>
<tr>
<td>Symptomatic PE</td>
<td>1317 (1 study) 3 months</td>
<td>0.3% vs 0.3% NS</td>
<td>⊕⊕⊕⊝HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistency: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directness: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision: OK</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1317 (1 study) 3 months</td>
<td>0.2% vs 0.3% NS</td>
<td>⊕⊕⊕MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistency: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directness: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision: -1 power inadequate</td>
<td></td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>1317 (1 study) 3 months</td>
<td>3% vs 3.5% NS</td>
<td>⊕⊕⊕MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study quality: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consistency: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directness: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imprecision: -1 power inadequate</td>
<td></td>
</tr>
</tbody>
</table>

Cette étude comparait des bas de compression graduée à la nadroparine pendant une période de 7 jours chez des patients subissant une arthroscopie du genou. La durée du traitement était de 7 jours et le suivi s’étalait sur 3 mois.

Aucune différence statistiquement significative n’a été observée en termes de taux de mortalité entre les bas de compression graduée et la nadroparine au bout de trois mois.

GRADE: MODERATE quality of evidence

L’incidence du critère de jugement composite (thrombose veineuse proximale asymptomatique, thrombose veineuse symptomatique et mortalité totale) était significativement plus basse avec les HBPM.

GRADE: MODERATE quality of evidence
Le traitement de trois mois par nadroparine induit un taux d'événements thrombotiques veineux cliniques moins élevé que le port de bas de compression graduée durant trois mois.
GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n’a été observée dans les taux d’événements pulmonaires symptomatiques entre les bas de compression graduée et la nadroparine au bout de trois mois.
GRADE: HIGH quality of evidence

Aucune différence statistiquement significative n’a été observée dans les taux de saignements majeurs entre les bas de compression graduée et la nadroparine au bout de trois mois.
GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée dans les taux de saignements mineurs entre les bas de compression graduée et la nadroparine au bout de trois mois.
GRADE: MODERATE quality of evidence
7.1.3 Thromboprophylaxie à long terme versus à court terme dans l’arthroscopie du genou

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>175 (1 study) 23-28d</td>
<td>0 vs 0 NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1, small study, power for this outcome probably inadequate</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>175 (1 study) 23-28d</td>
<td>0 vs 3.4% NS, p=0.246</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1, small study, power for this outcome probably inadequate</td>
</tr>
<tr>
<td>Symptomatic PE</td>
<td>175 (1 study) 23-28d</td>
<td>0 vs 0 NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1, small study, power for this outcome probably inadequate</td>
</tr>
<tr>
<td>Asymptomatic or symptomatic DVT</td>
<td>175 (1 study) 23-28d</td>
<td>2.8% vs 41.2% SS in favour of extended enoxaparin, p<0.001</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 FU 20%, no ITT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>175 (1 study) 23-28d</td>
<td>0 vs 0 NS</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1, small study, power for this outcome probably inadequate</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>175 (1 study) 23-28d</td>
<td>15.0% vs 11.4% NS, p=0.595</td>
<td>⊕⊕⊕⊝ MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1, small study, power for this outcome probably inadequate</td>
</tr>
</tbody>
</table>

Cette étude comparait un traitement prolongé (23 à 28 jours) par énoxaparine (40 mg par voie sous-cutanée) après une chirurgie avec un traitement de courte durée (3 à 8 jours) par énoxaparine après une chirurgie chez des patients subissant une chirurgie arthroscopique du ligament croisé antérieur du genou.
Il n'y avait pas de différence statistiquement significative dans le taux de mortalité entre le traitement prolongé par énoxaparine et le traitement à court terme par énoxaparine.

GRADE: MODERATE quality of evidence

Il n'y avait pas de différence statistiquement significative dans les TVP symptomatiques entre le traitement prolongé par énoxaparine et le traitement à court terme par énoxaparine.

GRADE: MODERATE quality of evidence

Le traitement prolongé par énoxaparine a été associé à un taux inférieur de TVP asymptomatiques ou symptomatiques comparé au traitement à court terme par énoxaparine.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée dans le taux d'embolies pulmonaires symptomatiques entre le traitement prolongé par énoxaparine et le traitement à court terme par énoxaparine.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée au niveau des saignements majeurs entre le traitement prolongé par énoxaparine et le traitement à court terme par énoxaparine.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n'a été observée au niveau des saignements mineurs entre le traitement prolongé par énoxaparine et le traitement à court terme par énoxaparine.

GRADE: MODERATE quality of evidence
7.2 La thromboprophylaxie dans le port du plâtre ou de l’ortèse

7.2.1 HBPM versus absence de thromboprophylaxie dans l’immobilisation d’un membre inférieur par port d’un plâtre

<table>
<thead>
<tr>
<th>LMWH versus no treatment for thromboprophylaxis with lower limb plaster cast or brace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Mortality</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DVT (symptomatic or asymptomatic)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Nous avons sélectionné une méta-analyse de 3 RCT (NICE 2010) et un RCT plus récent (Goel 2009) comparant des héparines de bas poids moléculaire à une absence de prophylaxie chez des patients ayant un plâtre ou un appareil orthopédique au niveau du membre inférieur (durée : jusqu’à 7

Un seul décès a été rapporté dans le groupe HBPM (Goel 2009) ; aucun décès n’a été rapporté dans les autres études. La signification statistique n’a pas été testée.

GRADE: sans objet

La méta-analyse de NICE 2010 a mis en évidence une différence statistiquement significative pour toutes les TVP (symptomatiques et asymptomatiques) entre les groupes de traitement en faveur des héparines de bas poids moléculaire. Dans une étude plus petite (Goel 2009), aucune différence statistiquement significative n’a été observée.

GRADE: LOW quality of evidence

Trois RCT groupés ont rapporté le critère d’évaluation « embolie pulmonaire », mais n’ont pas observé de différence statistiquement significative entre les groupes de traitement.

GRADE: LOW quality of evidence

Il n’y avait pas de différence statistiquement significative entre les groupes de traitement en ce qui concerne le critère d’évaluation « saignements majeurs ».

GRADE: LOW quality of evidence
7.2.2 Thromboprophylaxie à long terme versus à court terme dans l’immobilisation d’un membre inférieur par port d’un plâtre

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n= 272 (1 study) up to 6 w</td>
<td>0% vs 0% NS</td>
<td>⊕⊕⊕⊝ ⊙ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 only 1 trial, no ITT, considerable loss to FU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1 power NR</td>
</tr>
<tr>
<td>DVT (asymptomatic + symptomatic)</td>
<td>n= 272 (1 study) up to 6 w</td>
<td>21% vs 28% NS</td>
<td>⊕⊕⊕⊝ ⊙ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plaster cast subgroup</td>
<td>21% vs 36% P value: 0.04 SS in favour of post discharge LMWH tromboprophylaxis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 only 1 trial, unclear definition ITT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1 power NR</td>
</tr>
<tr>
<td>PE (symptomatic)</td>
<td>n= 272 (1 study) up to 6 w</td>
<td>0 vs 0% NS</td>
<td>⊕⊕⊕⊝ ⊙ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 only 1 trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1 power NR</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 272 (1 study) up to 6 w</td>
<td>0 vs 0% NS</td>
<td>⊕⊕⊕⊝ ⊙ LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study quality: -1 only 1 trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consistency: NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision: -1 power NR</td>
</tr>
</tbody>
</table>

Dans cette étude, l’HBPM a été comparée à un placebo chez des patients ayant subi une chirurgie pour une fracture aiguë de la cheville et portant un plâtre après la chirurgie. Les deux groupes de l’étude ont reçu 5 000 unités de dalteparine SC par jour au cours de la première semaine suivant la chirurgie, puis ont reçu un traitement prolongé par HBPM ou un placebo jusqu’au retrait du plâtre.

Aucun décès n’a été rapporté.
GRADE: LOW quality of evidence

Dans la population totale de l’étude, aucune différence statistiquement significative n’a été observée dans le nombre total d’événements de type thrombose veineuse profonde. Toutefois, la sous-analyse portant sur les plâtres a montré que les événements de TVP étaient significativement moins nombreux dans le groupe dalteparine que dans le groupe placebo.
GRADE: LOW quality of evidence

Aucun cas d’embolie pulmonaire symptomatique n’a été signalé.
GRADE: LOW quality of evidence

Aucun cas de saignement majeur n’a été rapporté.
GRADE: LOW quality of evidence

147
8 Résumé des résultats: la thromboprophylaxie dans la chirurgie générale

8.1 Traitement pharmacologique versus placebo pour la thromboprophylaxie dans la chirurgie générale

8.1.1 HNF versus placebo dans la chirurgie générale

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>n= 3315 (21 studies)</td>
<td>7d-9m</td>
<td>9.8% vs 21.6%</td>
<td>RR: 0.45 (95% CI 0.36 to 0.56) SS in favour of UFH Absolute effect: -21% (95% CI -31% to -11%)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>n= 1275 (10 studies)</td>
<td>7d-9m</td>
<td>4.0% vs7.6%</td>
<td>RR:0.52 (95% CI 0.30 to 0.90) SS in favour of UFH Absolute effect: -3% (95% CI -8% to 1%)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 3542 (21 studies)</td>
<td>7d-9m</td>
<td>5.2% vs 3.5%</td>
<td>RR:1.38 (95% CI 0.98 to 1.96) NS</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Cette méta-analyse incluait 21 RCT comparant l’héparine non fractionnée à l’absence de thromboprophylaxie chez des patients ayant subi une chirurgie générale. À l’exception d’une étude, toutes les études datent d’avant 1990. La plupart des études ont été extraites d’une ancienne revue systématique (Collins 1988), déjà discutée dans le cadre d’une recherche antérieure de la littérature en vue de la conférence de consensus sur la TEV de 2002.

Nous ne disposons pas de suffisamment d’informations pour savoir si toutes les études ont contrôlé les patients pour le critère d’évaluation « TVP » à un moment spécifique après la chirurgie. Cela semble être le cas pour de nombreuses études. Le taux de TVP rapporté inclut donc à la fois les TVP symptomatiques et asymptomatiques.

Aucun taux de mortalité n’a été rapporté.
Les événements de thrombose veineuse profonde et d'embolie pulmonaire étaient statistiquement significativement moins nombreux dans le groupe de patients traités par héparine non fractionnée par rapport à ceux qui n’avaient reçu aucune thromboprophylaxie.

Il n’y avait pas de différence statistiquement significative entre les groupes en ce qui concerne le critère d'évaluation « saignements majeurs ».

Nous n’avons pas évalué cette comparaison sur la base du système GRADE, car les données obtenues sur les RCT inclus étaient insuffisantes. Nice stipule que tous les RCT inclus ont soit été jugés individuellement comme étant de haute qualité (niveau 1+ ou niveau 1++), soit émanaient de revues systématiques de RCT ayant été jugés comme étant de haute qualité (niveau 1+ ou niveau 1++). Les auteurs ont cependant fait remarquer que nombre de ces études sont anciennes et que la pratique chirurgicale pourrait avoir changé depuis leur publication.
8.1.2 HBPM versus placebo dans la chirurgie générale

LMWH versus no thromboprophylaxis in general surgery (gastrointestinal, gynaecological, laparoscopic, thoracic and urological surgery)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>n= 433 (4 studies)</td>
<td>5-9d</td>
<td>2.7% vs 13.1% RR: 0.22 (95% CI 0.10 to 0.51) SS in favour of LMWH Absolute effect: -10% (95%CI -22% to 3%)</td>
<td>☻☻☻☻ VERY LOW Study quality: -2 small trials, limited data available Consistency: OK Directness: -1 heterogenous population Imprecision: OK</td>
</tr>
<tr>
<td>PE</td>
<td>n= 5134 (5 studies)</td>
<td>5d-2w</td>
<td>0.1% vs 0.5% RR: 0.22 (95% CI 0.06 to 0.78) SS in favour of LMWH Absolute effect: 0% (95% CI -1% to 0%)</td>
<td>☻☻☻☻ VERY LOW Study quality: small trials, 2 OL with unclear randomization, 3 limited data Consistency:OK Directness: -1 heterogenous population Imprecision:OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 5426 (7 studies)</td>
<td>5d-2w</td>
<td>2.8% vs 1.4% RR: 2.01 (95%CI 1.31 to 3.07) SS in favour of no prophylaxis Absolute effect: 1% (95% CI 1% to 2%)</td>
<td>☻☻☻☻ VERY LOW Study quality: -1 limited data for 3/7, 2 OL Consistency:OK Directness: -1 heterogenous population Imprecision:OK</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Cette méta-analyse incluait 7 RCT comparant des HBPM à l’absence de thromboprophylaxie chez des patients ayant subi une chirurgie générale. La chirurgie générale était définie comme chirurgie gastro-intestinale, gynécologique, laparoscopique, thoracique et urologique. Certaines études incluaient aussi des patients cancéreux. Ceci constitue une population cliniquement hétérogène. Aucun taux de mortalité n’a été rapporté.

Les événements de thrombose veineuse profonde et d’embolie pulmonaire étaient statistiquement significativement moins nombreux dans le groupe de patients traités par HBPM par rapport à ceux qui n’avaient reçu aucune thromboprophylaxie.

GRADE: VERY LOW quality of evidence (quality estimate based on limited data)

Toutefois, le nombre d’événements hémorragiques majeurs était deux fois plus élevé dans le groupe sous HBPM que dans le groupe sans traitement. La différence était statistiquement significative.

GRADE: VERY LOW quality of evidence (quality estimate based on limited data)
8.2 Durée de la thromboprophylaxie dans la chirurgie générale

8.2.1 Thromboprophylaxie à long terme versus à court terme dans la chirurgie abdominale ou pelvienne

Prolonged LMWH (31-31d) versus placebo after hospital discharge for thromboprophylaxis in abdominal or pelvic surgery

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n=901 (4 studies)</td>
<td>3 m</td>
<td>LMWH: 5.8% (95%CI 3.9 to 8.3) Pla: 5.35% (95%CI 3.6 to 7.6) OR = 1.12 (95%CI, 0.65 to 1.93) NS</td>
<td>☒ ☒ ☒ MODERATE Study quality: -1 FU NR, no ITT Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>All VTE</td>
<td>n=901 (4 studies)</td>
<td>3 m</td>
<td>6.1% (95%CI 4.0% to 8.7%) vs 14.3% (95%CI 11.2% to 17.8%) OR = 0.41 (95%CI, 0.26 to 0.63) SS in favour of LMWH NNT = 13 (95% CI 9 to 24)</td>
<td>☒ ☒ ☒ MODERATE Study quality: -1 FU NR, no ITT Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Symptomatic VTE</td>
<td>n=901 (4 studies)</td>
<td>3 m</td>
<td>0.2% (95%CI 0.0% to 1.2%) vs 1.7% (95%CI, 0.8% to 3.4%) OR = 0.22 (95%CI, 0.06 to 0.80) SS in favour of LMWH NNT = 66 (95% CI 36 - 400)</td>
<td>☒ ☒ ☒ MODERATE Study quality: -1 FU NR, no ITT Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>DVT (symptomatic + asymptomatic)</td>
<td>n=901 (4 studies)</td>
<td>3 m</td>
<td>OR = 0.43 (95%CI, 0.27 to 0.66) SS in favour of LMWH NNT = 26 (95%CI 17 to 59)</td>
<td>☒ ☒ ☒ MODERATE Study quality: -1 FU NR, no ITT Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Bleeding</td>
<td>n=901 (4 studies)</td>
<td>3 m</td>
<td>3.7% (95%CI, 2.4% to 5.5%) vs 4.1% (95%CI, 2.7% to 6.0%) OR = 1.11 (95%CI, 0.62 to 1.97) NS</td>
<td>☒ ☒ ☒ MODERATE Study quality: -1 FU NR, no ITT Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>

* As calculated from meta-analysis by authors

Une méta-analyse de quatre RCT a comparé une thromboprophylaxie prolongée par HBPM à une thromboprophylaxie standard au cours d’un séjour à l’hôpital chez des patients subissant une chirurgie abdominale ou pelvienne. Après un traitement hospitalier initial, les patients ont été randomisés pour recevoir de la tinzaparine, de la daltéparine ou de l’énoxaparine pendant environ trois mois après leur sortie de l’hôpital, tandis que les groupes témoins ont reçu un placebo. Les populations incluaient tant des patients cancéreux que non-cancéreux.

Aucune différence statistiquement significative n’a été observée au niveau de la mortalité entre les groupes HBPM et le groupe placebo.

GRADE: MODERATE quality of evidence
Une thromboprophylaxie prolongée par HBPM réduit de manière significative le risque de TEV I et de TVP après une chirurgie abdominale ou pelvienne majeure, par rapport à une thromboprophylaxie de courte durée administrée à l’hôpital.

GRADE: MODERATE quality of evidence

Il n’y a pas de différence statistiquement significative dans les complications hémorragiques entre les groupes de traitement.

GRADE: MODERATE quality of evidence
8.2.2 Thromboprophylaxie à long terme versus à court terme chez les patients cancéreux subissant une chirurgie

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n= 501 (1 study) 3m</td>
<td>RR= 0.49 (95% CI 0.12 to 1.94) NS</td>
<td>☭✭✭✭ LOW</td>
<td>Study quality: -1, low FU, no ITT Consistency: NA Directness: -1 Imprecision: -1 wide CI</td>
</tr>
<tr>
<td>DVT (symptomatic and asymptomatic)</td>
<td>n= 248 (1 study) 4w</td>
<td>RR= 0.21 (95% CI 0.05 to 0.94) SS in favour of extended thromboprophylaxis</td>
<td>☭✭✭✭ LOW</td>
<td>Study quality: -1, low FU, no ITT Consistency: NA Directness: -1, asymptomatic DVT Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 501 (1 study) 4w</td>
<td>RR= 2.94 (95% CI 0.12 to 71.85) NS</td>
<td>☭✭✭✭ LOW</td>
<td>Study quality: -1, not reported in 2/3 trials Consistency: NA Directness: -1, wide CI</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>n= 501 (1 study) 4w</td>
<td>RR= 1.31 (95% CI 0.56 to 3.05) NS</td>
<td>☭✭✭✭ LOW</td>
<td>Study quality: -1, not reported in 2/3 trials Consistency: NA Directness: -1, wide CI</td>
</tr>
</tbody>
</table>

Une revue systématique a identifié trois RCT comparant la thromboprophylaxie prolongée par HBPM à la thromboprophylaxie à durée limitée (administrée en milieu hospitalier) au cours d’un séjour hospitalier chez des patients cancéreux subissant une chirurgie abdominale ou pelvienne majeure. Après un traitement hospitalier initial par HBPM (6-10 jours), les patients ont été randomisés pour recevoir soit une HPBM, soit un placebo pendant une période supplémentaire de 21 à 35 jours. Tous les patients devaient subir une vénographie bilatérale à la fin du traitement. Seuls 2 essais incluaient des données susceptibles d’être extraites et rapportées.

Aucune différence statistiquement significative n’a été observée dans les taux de mortalité entre la thromboprophylaxie par HBPM à durée prolongée et celle à durée limitée.
GRADE: LOW quality of evidence

La thromboprophylaxie prolongée par HBPM induit une réduction significative du risque de toutes les TVP (symptomatiques et asymptomatiques) après une chirurgie abdominale ou pelvienne majeure.
GRADE: LOW quality of evidence
Il n'y a pas de différence statistiquement significative dans les complications hémorragiques mineures ou majeures entre les groupes de traitement.

GRADE: LOW quality of evidence
9 Résumé des résultats: la thromboprophylaxie chez les patients médicaux/dans l'immobilisation
9.1 Traitement pharmacologique versus placebo pour la thromboprophylaxie chez les patients médicaux

9.1.1 Résumé et conclusions: héparine versus absence d'héparine chez les patients médicaux en général (pas d'AVC)

Heparin vs no heparine in hospitalized medical patients with no stroke

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
</table>
| Mortality | 20717 (10 studies) | 10d-6mo | Lederle 2011 6.5% vs 6.6% OR = 0.94 (95%CI 0.84 to 1.04) NS | ⊕⊕⊕MODERATE
Study quality: 1: no blinding and unclear allocation concealment in largest trial
Consistency: OK
Directness: OK
Imprecision: OK |
| | 8323 (1 study) | 30d | Kakkar 2011 4.9% vs 4.8% RR=1.0 (95%CI: 0.8 to 1.2) NS | ⊕⊕⊕LOW
Study quality: 1: no blinding and unclear all conc in largest trial
Consistency: OK
Directness: OK
Imprecision: -1: wide CI |
| Symptomatic DVT| 5957 (5 studies) | 10d-6mo | Lederle 2011 0.79% vs 0.96% OR = 0.75 (95%CI 0.43 to 1.30) NS | ⊕⊕⊕MODERATE
Study quality: 1: no blinding and unclear all conc in largest trial
Consistency: OK
Directness: OK
Imprecision: OK |
| PE | 20717 (10 studies) | 10d-6mo | Lederle 2011 0.84% vs 1.2% OR = 0.69 (95%CI, 0.52 to 0.90) SS in favour of heparin
Absolute effect per 1000 patients: -4 (95%CI, -6 to -1) | ⊕⊕⊕MODERATE
Study quality: 1: no blinding and unclear all conc in largest trial
Consistency: OK
Directness: OK
Imprecision: OK |
| Major bleeding | 20447 (9 studies) | 10d-6mo | Lederle 2011 0.40% vs 0.25% OR = 1.49 (95%CI, 0.91 to 2.43) NS | ⊕⊕⊕MODERATE
Study quality: 1: no blinding and unclear all conc in largest trial
Consistency: OK
Directness: OK
Imprecision: OK |
| | 8323 (1 study) | 90d | Kakkar 2011 0.4% vs 0.3% RR= 1.4 (95% CI 0.7 to 3.1) NS | ⊕⊕MODERATE
Study quality: 1: no blinding and unclear all conc in largest trial
Consistency: OK
Directness: OK
Imprecision: OK |

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Une méta-analyse (Lederle 2011) et une RCT plus récente (Kakkar 2011) ont comparé l'héparine à l'absence d'héparine chez des patients hospitalisés (à l'exception des patients ayant subi un accident...
vasculaire cérébral). Selon l'étude, la prophylaxie par héparine a été administrée pendant 6 à 21 jours. Dans la méta-analyse, une HBPM a été utilisée dans 7 études, une HNF dans 2 études et le fondaparinux dans 1 étude. Seules les études fournissant des données séparées pour les patients médicaux (à l'exception des patients ayant subi une chirurgie, un traumatisme, une chirurgie obstétrique ou des patients pédiatriques) ont été inclues. Dans l'étude de Kakkar 2011, les patients portaient également des bas de contention élastiques. La méta-analyse n'indique pas clairement si les patients utilisaient des bas de contention complémentaires ou une autre prophylaxie mécanique.

La prophylaxie par héparine n'a pas eu d'effet statistiquement significatif sur la mortalité.
GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée entre la prophylaxie par héparine et l'absence d'héparine dans la réduction du risque de TVP symptomatique.
GRADE: LOW quality of evidence

La prophylaxie par héparine a réduit de manière significative le risque d'embolie pulmonaire.
GRADE: MODERATE quality of evidence

Le traitement par héparine n’a pas eu d'effet statistiquement significatif sur les événements hémorragiques majeurs.
GRADE: MODERATE quality of evidence
9.1.2 Résumé et conclusions: héparine versus absence d’héparine chez les patients ayant eu un AVC

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N* of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>n= 15405 (8 studies)</td>
<td>treatment 6-21 d or until discharge FU 14d-6m</td>
<td>9.4% vs 9.8% OR = 0.91 (95%CI 0.70 to 1.18) NS</td>
<td>⊕⊕⊕MODERATE Study quality:-1, largest trial open-label, comparison “usual care” Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>n= 206 (1 study)</td>
<td>treatment 6-21 d or until discharge FU 14d-6m</td>
<td>0 vs 0.95% OR = 0.14 (95%CI 0.00 to 7.09) NS</td>
<td>⊕⊕⊝LOW Study quality:-1, only one trial Consistency: NA Directness: OK Imprecision:-1: wide CI</td>
</tr>
<tr>
<td>PE</td>
<td>n = 14862 (5 studies)</td>
<td>treatment 6-21 d or until discharge FU 14d-6m</td>
<td>0.78% vs 0.96% OR = 0.72 (95%CI 0.50 to 1.04) NS</td>
<td>⊕⊕⊕MODERATE Study quality:-1, largest trial open-label Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n = 15405 (8 studies)</td>
<td>treatment 6-21 d or until discharge FU 14d-6m</td>
<td>1.5% vs 0.88% OR = 1.66 (95%CI 1.20 to 2.28) SS in favour of no heparin Absolute effect per 1000 patients: 6 (95%CI 2 to 12)</td>
<td>⊕⊕⊕MODERATE Study quality:-1, largest trial open-label, comparison “usual care” Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>All bleeding</td>
<td>n = 522 (6 studies)</td>
<td>treatment 6-21 d or until discharge FU 14d-6m</td>
<td>8.8% vs 10% OR = 0.95 (95%CI 0.55 to 1.63) NS</td>
<td>⊕⊕⊕MODERATE Study quality:-1, small studies Consistency: OK Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Une revue systématique et méta-analyse (Lederle 2011) a comparé l’héparine (HNF ou HBPM) avec l’absence de traitement par héparine chez des patients ayant subi un accident vasculaire cérébral. La durée de la thromboprophylaxie par héparine variait de 6 à 14 jours, ou jusqu’à la sortie de l’hôpital.

Aucune différence statistiquement significative n’a été constatée dans le nombre de décès entre les différents groupes de traitement.

GRADE: MODERATE quality of evidence
Une étude n’ a pas mis en évidence une réduction significative du risque de TVP symptomatique par la prophylaxie à base d’héparine.

GRADE: LOW quality of evidence

La prophylaxie par héparine n’a pas induit de diminution statistiquement significative du nombre de cas d’embolies pulmonaires chez les patients ayant subi un AVC.

GRADE: MODERATE quality of evidence

Un nombre significativement plus élevé d’événements hémorragiques majeurs est survenu dans le groupe traité par héparine, comparé au groupe sans héparine. Selon certaines études de plus petite envergure, le taux global de « tous les saignements confondus » ne différerait pas de façon significative entre les groupes de traitement.

GRADE: MODERATE quality of evidence
9.2 Traitement pharmacologique versus traitement pharmacologique pour la thromboprophylaxie chez les patients médicaux

9.2.1 Traitement à long terme par apixaban versus traitement à court terme par énoxaparine chez les patients médicaux

| Apixaban 2.5mg 2x/d for 30d versus enoxaparin subcutaneously 40mg 1x/d for 6-14d |
|-----------------|-----------------|-----------------|
| **Outcomes** | **N° of participants (studies)** | **Follow up** | **Results** | **Quality of the evidence (GRADE)** |
| Mortality | 6528 (1 study) | 90d | 4.1% in each group 'NS' | ⊕⊕⊕⊝ MODERATE |
| | | | | Study quality: 1 poor reporting of this outcome |
| | | | | Consistency: NA |
| | | | | Directness: OK |
| | | | | Imprecision: OK |
| Composite | 6528 (1 study) | 30d | 6-14d parenteral treatment 1.73% vs 1.61% RR= 1.06 (95%CI 0.69 to 1.63) NS | ⊕⊕⊕ ⊗ LOW (6-14d) |
| (symptomatic DVT or asymptomatic proximal DVT, PE, death related to VTE) | | | | Study quality: 1 poor reporting of this outcome |
| | | | | Consistency: NA |
| | | | | Directness: OK |
| | | | | Imprecision: OK |
| Symptomatic deep-vein thrombosis | 6528 (1 study) | 30d | 6-14d parenteral treatment 0.03% vs 0.12% NT | Not applicable |
| Fatal or nonfatal pulmonary embolism | 6528 (1 study) | 30d | 6-14d parenteral treatment 0.09% vs 0.09% NT | Not applicable |
| Major bleeding | 6528 (1 study) | 30d | 6-14d parenteral treatment 0.25% vs 0.12% RR= 2.06 (95%CI 0.62 to 7.85) NS | ⊕⊕⊕ ⊗ MODERATE (6-14d) |
| | | | | Study quality: OK |
| | | | | Consistency: NA |
| | | | | Directness: OK |
| | | | | Imprecision: -1: wide CI, underpowered |
Dans cette étude, l'administration d'apixaban 2,5 mg 2x/j. pendant 30 jours a été comparée à l'administration d'énoxaparine SC 40 mg 1x/j. pendant 6 à 14 jours. Les patients étaient hospitalisés pour une affection médicale. Une limitation modérée à sévère de la mobilité était présente chez tous les patients.

Au terme d'un suivi de 90 jours, aucune différence statistiquement significative n’a été observée au niveau de la mortalité entre les deux groupes de traitement.

GRADE: MODERATE quality of evidence

Le critère d’évaluation primaire de cette étude était un critère composite associant la TVP symptomatique ou la TVP proximale asymptomatique, l'EP et le décès par TEV à 30 jours. Aucune différence statistiquement significative n’a été observée pour ce critère d’évaluation entre les deux groupes de traitement.

GRADE: VERY LOW quality of evidence

À la fin de la période de traitement parentéral (6-14 jours), la différence entre les deux groupes pour ce critère composite ne présentait pas non plus de différence significative.

GRADE: LOW quality of evidence

La différence sur le plan des thromboses veineuses profondes symptomatiques et du nombre total d’embolies pulmonaires n’a pas été statistiquement testée.

GRADE: not applicable

Le traitement de 30 jours par apixaban a été associé à un nombre plus élevé de saignements majeurs que le traitement par énoxaparine pendant 6 à 14 jours.

GRADE: LOW quality of evidence

À la fin de la période de traitement parentéral (6-14 jours), aucune différence significative n’a été observée dans les taux de saignements majeurs entre l’apixaban et l’énoxaparine.

GRADE: MODERATE quality of evidence
Traitement à long terme par rivaroxaban versus traitement à court terme par énoxaparine chez les patients médicaux

Extended (35d) rivaroxaban 10mg vs. standard duration enoxaparin 40mg (10d) for thromboprophylaxis in acutely ill medical patients

Bibliography: Cohen 2013-MAGELLAN(192)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>8101 1 study 35d</td>
<td>5.1% vs 4.8% NT</td>
<td>NA</td>
</tr>
<tr>
<td>Composite: (asymptomatic proximal DVT, symptomatic proximal or distal DVT, symptomatic nonfatal PE, or death related to VTE) (PO)</td>
<td>8101 1 study 35d</td>
<td>At 10 days 2.7% vs 2.7% RR= 0.97 (95%CI 0.71 to 1.31) p=0.003 for noninferiority At 35 days 4.4% vs 5.7% RR =0.77 (95%CI 0.62 to 0.96) SS, in favour of rivaroxaban</td>
<td>⊕⊕⊝⊝LOW (10 days) ⊕⊕⊕⊝⊝VERYLOW (35 days) Study quality:-1 or -2: no itt, incomplete outcome data, high risk of bias at 35 days. Consistency: NA Directness:-1: composite endpoint incl asympt DVT Imprecision:OK</td>
</tr>
<tr>
<td>Symptomatic proximal or distal DVT</td>
<td>8101 1 study 35d</td>
<td>At 10 days 0.2% vs 0.2% NT At 35 days 0.4% vs 0.5% NT</td>
<td>NA</td>
</tr>
<tr>
<td>Symptomatic nonfatal pulmonary embolism</td>
<td>8101 1 study 35d</td>
<td>At 10 days 0.2% vs <0.1% NT At 35 days 0.3% vs 0.5% NT</td>
<td>NA</td>
</tr>
<tr>
<td>Major or clinically relevant non-major bleeding (PO)</td>
<td>8101 1 study 35d</td>
<td>At 10 days 2.8% vs 1.2% RR = 2.3 (95% CI 1.63 to 3.17) SS in favour of enoxaparin At 35 days 4.1% vs 1.7% RR = 2.5 (95% CI 1.85 to 3.25) SS in favour of enoxaparin</td>
<td>⊕⊕⊕⊕HIGH (10 days) ⊕⊕⊕MODERATE (35 days) Study quality: OK or -1: high risk of bias at 35 days Consistency: NA Directness: OK Imprecision:OK</td>
</tr>
</tbody>
</table>

Dans cette étude contrôlée randomisée, des patients souffrant d’une affection médicale aiguë ont reçu une thromboprophylaxie par rivaroxaban 10 mg/j. pendant 35 jours ou par énoxaparine SC à raison de 40 mg/j. pendant 10 jours. Les patients avaient au moins un facteur de risque de TEV. L’étude visait à tester la non-infériorité du rivaroxaban au jour 10 et sa supériorité jusqu’au jour 35.

Aucun test statistique n’a été réalisé pour le critère de mortalité.

GRADE: NA
S'agissant du critère d'évaluation primaire, un critère composite associant la thrombose veuse profonde proximale asymptomatique, la thrombose veuse profonde proximale ou distale symptomatique, l'embolie pulmonaire symptomatique non fatale ou le décès par thromboembolie veuseuse, le traitement par rivaroxaban de 35 jours s'est avéré supérieur au traitement par énoxaparine de 10 jours.

GRADE: VERY LOW quality of evidence

Au bout de 10 jours de traitement, le rivaroxaban s'est révélé non inférieur à l'énoxaparine pour ce critère d'évaluation composite.

GRADE: LOW quality of evidence

Aucun test statistique n'a été réalisé pour le critère d'évaluation de TVP.

GRADE: NA

Aucun test statistique n'a été réalisé pour le critère d'évaluation d'embolie pulmonaire symptomatique.

GRADE: NA

Une analyse réalisée à la fois au jour 10 et au jour 35 a montré que le rivaroxaban était associé à un nombre statistiquement significativement plus élevé de saignements cliniquement significatifs comparé à l'énoxaparine.

GRADE: HIGH quality of evidence at day 10

GRADE: MODERATE quality of evidence at day 35
9.2.3 Tinzaparine versus aspirine dans l’AVC ischémique aigu

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
</table>
| Mortality | 1486 (1 study) | 6 mo | TINZA175: 14.6%
TINZA100: 14.2%
ASP: 14.9%
TINZA175 vs ASA:
OR=0.98 (0.69 to 1.40), NS
TINZA100 vs ASA:
OR=0.95 (0.67 to 1.35), NS | ⊕⊕⊕⊝ MODERATE
Study quality: -1 for unclear allocation concealment and unclear blinding of assessment
Consistency: NA
Directness: OK
Imprecision: OK |
| Symptomatic DVT | 1486 (1 study) | +/-15d | TINZA175: 0%
TINZA100: 0.6%
ASP: 1.8%
TINZA175 vs ASA:
OR=0 (0 to 9.29), SS
TINZA100 vs ASA:
OR=0.32 (0.07 to 1.14), NS | ⊕⊕⊝⊝ LOW
Study quality: -1 for unclear allocation concealment and unclear blinding of assessment
Consistency: NA
Directness: OK
Imprecision: -1: wide CI |
| VTE | 1486 (1 study) | +/-15d | TINZA175: 0.4%
TINZA100: 1.2%
ASP: 2.6%
TINZA175 vs ASP:
OR=0.15 (0.03 to 0.68), SS in favour of tinzaparin
TINZA100 vs ASP:
OR=0.44 (0.17 to 1.17), NS | ⊕⊕⊕ MODERATE
Study quality: -1 for unclear allocation concealment and unclear blinding of assessment
Consistency: NA
Directness: OK
Imprecision: OK |
| Major bleeding | 1486 (1 study) | +/-15d | TINZA175: 0.8%
TINZA100: 0.4%
ASP: 0.4%
TINZA175 vs ASP:
OR=2.03 (0.36 to 15.9), NS
TINZA100 vs ASP:
OR=0.97 (0.10 to 9.33), NS | ⊕⊕⊝ ⊝ LOW
Study quality: -1 for unclear allocation concealment and unclear blinding of assessment
Consistency: NA
Directness: OK
Imprecision: -1: wide CI |
| Symptomatic intracranial haemorrhage | 1486 (1 study) | +/-15d | TINZA175: 1.4%
TINZA100: 0.6%
ASP: 0.2%
TINZA175 vs ASP:
OR=7.15 (1.10 to 163), SS in favour of aspirin
TINZA100 vs ASP:
OR=2.91 (0.31 to 77.0), NS | ⊕⊕⊝⊝ LOW
Study quality: -1 for unclear Study quality: -1 for unclear allocation concealment and unclear blinding of assessment
Consistency: NA
Directness: OK
Imprecision: -1: wide CI |
Dans cette étude contrôlée randomisée, des patients ayant souffert d'un accident vasculaire cérébral aigu ont été traités par tinzaparine 175 UI anti-Xa/kg, tinzaparine 100 UI anti-Xa/kg ou aspirine 300 mg. Le traitement a été instauré dans les 48h suivant l'AVC ischémique aigu, et poursuivi durant 10 jours.

Aucune différence statistiquement significative n’a été observée au niveau de la mortalité entre la tinzaparine 175 UI anti-Xa/kg, la tinzaparine 100 UI anti-Xa/kg ou l'aspirine 300 mg.

GRADE: MODERATE quality of evidence

Aucune différence significative n’a été observée dans les taux de TVP symptomatique entre la tinzaparine 100 UI anti-Xa/kg et l'aspirine 300 mg. La fréquence de la TVP symptomatique était significativement plus faible sous tinzaparine 175 UI anti-Xa/kg que sous l'aspirine 300 mg. L'intervalle de confiance était cependant relativement large.

GRADE: LOW quality of evidence

La tinzaparine administrée à dose élevée obtenait des résultats statistiquement significativement meilleurs dans la réduction de la TEV comparée à l'aspirine 300 mg. Il n'y avait aucune différence entre la faible dose de tinzaparine et l'aspirine.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée au niveau des saignements majeurs entre la tinzaparine 175 UI anti-Xa/kg, la tinzaparine 175 UI anti-Xa/kg ou l'aspirine 300 mg.

GRADE: LOW quality of evidence

Les hémorragies intracrâniennes symptomatiques étaient plus nombreuses avec la tinzaparine administrée à dose élevée qu'avec l'aspirine 300 mg. L'intervalle de confiance était cependant relativement large.

Il n'y avait aucune différence entre la faible dose de tinzaparine et l'aspirine.

GRADE: LOW quality of evidence
9.3 Durée de la thromboprophylaxie chez les patients médicaux

9.3.1 Thromboprophylaxie à long terme versus à court terme chez les patients médicaux

Extended duration (4 week) enoxaparin 40mg/d versus placebo for thromboprophylaxis in medically ill patients, after an initial 10 days of open label enoxaparin

Bibliography: Hull 2010-EXCLAIM(194)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>6085 (1 study)</td>
<td>6 mo</td>
<td>8.2% vs 7.7% HR: 1.08 (95% CI 0.89 to 1.31) NS</td>
<td>⚫⚫⚫⚫ MODERATE Study quality: -1, run in with enoxaparin, change in eligibility criteria Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>VTE (composite of symptomatic or asymptomatic proximal DVT, symptomatic pulmonary embolism, or fatal pulmonary embolism) (PO)</td>
<td>6085 (1 study)</td>
<td>1 mo</td>
<td>2.5% vs 4.0% ARD: -1.53 (95% CI -2.54 to 0.52) SS in favour of extended-duration enoxaparin</td>
<td>⚫⚫⚫⚫ LOW Study quality: -1, run in with enoxaparin, change in eligibility criteria Consistency: NA Directness: -1 for composite endpoint incl asympt DVT Imprecision: OK</td>
</tr>
<tr>
<td>Symptomatic VTE</td>
<td>6085 (1 study)</td>
<td>1 mo</td>
<td>0.2% vs 1.0% ARD: -0.75 (95% CI -1.19 to -0.32) SS in favour of extended enoxaparin</td>
<td>⚫⚫⚫⚫ MODERATE Study quality: -1, run in with enoxaparin, change in eligibility criteria Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>6085 (1 study)</td>
<td>1 mo</td>
<td>0.8% vs 0.3% ARD: 0.51% (95% CI 0.12 to 0.89) SS in favour of placebo</td>
<td>⚫⚫⚫⚫ MODERATE Study quality: -1, run in with enoxaparin, change in eligibility criteria Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
</tbody>
</table>

Dans cette étude contrôlée randomisée, des patients médicaux hospitalisés, souffrant d'une affection aiguë et dont la mobilité a été récemment réduite ont été traités par énoxaparine SC 40 mg/j. ou par un placebo pendant 4 semaines. Les deux groupes ont reçu de l'énoxaparine en ouvert pendant une période initiale de 10 +/-4 jours avant la randomisation. Les critères d’inclusion pour le degré de mobilité ont été modifiés au cours de l’étude.

À 6 mois, la différence de mortalité entre les groupes de traitement n’était pas statistiquement significative.

GRADE: MODERATE quality of evidence
La différence en termes d'événements thromboemboliques veineux (y compris la TVP proximale symptomatique ou asymptomatique) était statistiquement significative en faveur du traitement prolongé par énoxaparine.

GRADE: LOW quality of evidence

Le nombre de TEV symptomatiques était significativement plus faible avec un traitement prolongé par énoxaparine par rapport à un traitement par placebo.

GRADE: MODERATE quality of evidence

Le traitement prolongé par énoxaparine a donné lieu à un nombre significativement plus élevé d'événements hémorragiques majeurs.

GRADE: MODERATE quality of evidence
9.4 Thromboprophylaxie lors de voyages avec immobilisation prolongée

Aucune étude n’a répondu à nos critères d’inclusion (traitement pharmacologique versus placebo ou versus bas de compression graduée).

Une revue systématique Cochrane (Clarke 2006(195)) a comparé le port de bas de compression graduée à l’absence de prophylaxie lors de transports aériens. Les bas de compression ont réduit le taux de TVP asymptomatiques (OR 0,10 [IC95% : de 0,04 à 0,25). Aucun décès, aucune embolie pulmonaire ou TVP symptomatique n’ont été signalés.
10 Résumé des résultats: la thromboprophylaxie chez les patients cancéreux
10.1 Traitement pharmacologique versus placebo pour la thromboprophylaxie chez les patients cancéreux

10.1.1 Héparine versus placebo chez les patients cancéreux (sans autre indication d’anticoagulation)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N* of participants (studies)</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>1884 (7 studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 m</td>
<td>1-year mortality</td>
<td>MODERATE</td>
</tr>
<tr>
<td></td>
<td>6w-48mo</td>
<td>50.2% vs 55.7%</td>
<td>Study quality:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR= 0.93 (95%CI 0.85 to 1.02)</td>
<td>Consistency:-1 Conflicting results (moderate heterogeneity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td>Directness:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mortality over study duration</td>
<td>Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR= 0.79 (95%CI 0.67 to 0.93)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS in favour of heparin</td>
<td></td>
</tr>
<tr>
<td>Symptomatic VTE</td>
<td>2767 (8 studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12m</td>
<td>2.8% vs 6.2%</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: 0.55 (95% CI 0.37 to 0.82)</td>
<td>Study quality:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS in favour of heparin</td>
<td>Consistency:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision:OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>3346 (10 studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6w-48mo</td>
<td>1.8% vs 1.9%</td>
<td>MODERATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: 1.30 (95% CI 0.59 to 2.88)</td>
<td>Study quality:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
<td>Consistency:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directness:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imprecision:-1 Wide CI</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Une revue Cochrane a évalué l’efficacité et la sécurité d’anticoagulants parentéraux (héparine et héparine de bas poids moléculaire) chez des patients cancéreux n’ayant aucune indication thérapeutique ou (autre) indication prophylactique pour un traitement anticoagulant.

L’effet du traitement par héparine sur la mortalité n’était pas statistiquement significatif à 12 mois (RR 0.93; IC à 95% 0.85 à 1.02), mais il était statistiquement significatif pendant la durée des études.

GRADE: MODERATE quality of evidence

Le traitement par héparine a été associé à une réduction statistiquement significative des événements thromboemboliques veineux symptomatiques.

GRADE: HIGH quality of evidence

Le traitement par héparine n’a pas été associé à un effet statistiquement significatif sur les saignements majeurs.

GRADE: MODERATE quality of evidence
10.1.2 HBPM versus placebo chez les patients en ambulatoire recevant une chimiothérapie

LMWH vs placebo in ambulatory cancer patients receiving chemotherapy

Bibliography: systematic review and meta-analysis Dinisio 2012 (Dinisio 2012, #39) included these RCTs: Agnelli 2009(197), Altinbas 2004(198), Haas 2005(205), Kakkar 2004(199), Perry 2010(200), Sideras 2006(201)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N* of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One year mortality</td>
<td>1842</td>
<td>120d-12m</td>
<td>Dalteparin or nadroparin vs placebo RR: 1.04 (95%CI, 0.92 to 1.16) NS</td>
<td>⊗⊗⊗⊕MODERATE Study quality: 1 Incomplete outcome data Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Symptomatic VTE</td>
<td>788</td>
<td>18w-12m</td>
<td>Dalteparin vs placebo 4.8% vs 6.2% RR: 0.75 (95%CI, 0.42 to 1.32) NS</td>
<td>⊗⊗⊗⊕MODERATE Study quality: 1 Incomplete outcome data Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nadroparin vs placebo 1.6% vs 3.2% RR: 0.50 (95%CI, 0.22 to 1.09) NS</td>
<td>⊗⊗⊗⊕MODERATE Study quality: 1 Incomplete outcome data Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dalteparin/nadroparin/certoparin vs placebo 2.7% vs 5.0% RR: 0.62 (95%CI, 0.41 to 0.93) SS in favour of LMWH NNT : 60</td>
<td>⊗⊗⊗⊕MODERATE Study quality: 1 Incomplete outcome data Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>698</td>
<td>18w-12m</td>
<td>Dalteparin vs placebo 2.2% vs 1.6% RR: 1.38 (95%CI, 0.26 to 7.29) NS</td>
<td>⊗⊗⊗⊗LOW Study quality: 1 Incomplete outcome data Consistency:OK Directness:OK Imprecision: 1 wide CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nadroparin vs placebo 0.6% vs 0.0% RR: 5.46 (95%CI 0.30 to 98.43) NS</td>
<td>⊗⊗⊗⊗LOW Study quality: 1 Incomplete outcome data Consistency:NA Directness:OK Imprecision: 1 wide CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dalteparin/nadroparin/certoparin vs placebo 1.6% vs 1.2% RR: 1.57 (95%CI, 0.69 to 3.60) NS</td>
<td>⊗⊗⊗⊗LOW Study quality: 1 Incomplete outcome data Consistency:OK Directness:OK Imprecision: 1 wide CI</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6
Une revue systématique Cochrane a évalué l’efficacité et la sécurité de la thromboprophylaxie primaire chez les patients cancéreux ambulatoires recevant une chimiothérapie. Les héparines de bas poids moléculaire ont été comparées au placebo. 6 RCT ont été identifiés, dont la durée variait de 120 jours à 1 an.

Aucune différence n’a été relevée dans les taux de mortalité à 1 an lors de la comparaison entre les héparines de bas poids moléculaire et le placebo.

GRADE: MODERATE quality of evidence

Les héparines de bas poids moléculaire ont induit une réduction significative de l’incidence de la TEV symptomatique. Cela correspond à un NNT (nombre nécessaire à traiter) de 60.

GRADE: MODERATE quality of evidence

Le risque de saignements majeurs n’était pas significativement plus élevé avec les héparines de bas poids moléculaire. Les données suggéraient une augmentation de 60 % (non significative), mais les études n’étaient probablement pas suffisamment puissantes pour détecter une différence statistiquement significative.

GRADE: LOW quality of evidence
10.1.3 Antagonistes de la vitamine K versus placebo chez les patients cancéreux (sans autre indication d’anticoagulation)

Warfarin versus placebo in patients with cancer who have no (other) therapeutic or prophylactic indication of anticoagulation.

Bibliography: systematic review and meta-analysis Akl 2011(206) included these RCTs: Chahinian 1989(207), Daly 1991(208), Levine 1994(209), Maurer 1997(210), Zacharski 1984(211)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality at 1 year</td>
<td>1604 (5 studies) median 1y</td>
<td></td>
<td>44.9% vs 46.0% RR: 0.94 (95% CI 0.87-1.03) NS</td>
<td>⊕⊕⊕MODERATE Study quality: 1 no blinding in 4/5, unclear allocation concealment in 2, no ITT in 4/5 Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Venous thromboembolism</td>
<td>315 (1 study) 1y</td>
<td></td>
<td>0.6% vs 4.3% RR: 0.15 (95% CI 0.02 to 1.20) NS</td>
<td>⊕⊕⊕MODERATE Study quality:OK Consistency:NA Directness:OK Imprecision:-1 estimate does not exclude important benefit</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1282 (4 studies) Median 1y</td>
<td></td>
<td>11.1% vs 22.2% RR: 4.24 (95% CI 1.85 to 9.68) SS in favour of placebo</td>
<td>⊕⊕⊕MODERATE Study quality: 1, no blinding in 3/4 Consistency:OK Directness:OK Imprecision:OK</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Cette revue Cochrane a évalué l’efficacité et la sécurité d’anticoagulants oraux chez des patients cancéreux ne présentant aucune indication thérapeutique ou prophylactique pour un traitement anticoagulant. L’INR cible était inférieur à l’objectif habituel de 2-3 utilisé dans la plupart des études.

Aucune différence statistiquement significative n’a été observée au niveau des taux de mortalité à un an.
GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée entre la warfarine et le placebo dans la réduction du risque de thromboembolie veineuse. Toutefois, ces résultats étaient basés sur une seule étude, et la précision de l’estimation n’exclut pas qu’un patient retire un bénéfice (la limite inférieure du RR suggère encore l’existence d’un bénéfice).
GRADE: MODERATE quality of evidence

Le risque de saignements majeurs était significativement plus élevé avec la warfarine par rapport au placebo.
GRADE: MODERATE quality of evidence
10.1.4 Antagonistes de la vitamine K versus placebo chez les patients en ambulatoire recevant une chimiothérapie

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic VTE</td>
<td>311 (1 study)</td>
<td>Until 1 week after chemo</td>
<td>0.7% vs 4.4% RR: 0.15 (95%CI, 0.02 to 1.20) NS</td>
<td>☒ ☒ ☒ ☒ MODERATE Study quality: 1 Incomplete outcome data Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Symptomatic PE</td>
<td>311 (1 study)</td>
<td>Until 1 week after chemo</td>
<td>0.7% vs 0.6% RR: 1.05 (95%CI, 0.07 to 16.58) NS</td>
<td>☒ ☒ ☒ LOW Study quality: 1 Incomplete outcome data Consistency: NA Directness: OK Imprecision: 1 Wide CI</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>311 (1 study)</td>
<td>Until 1 week after chemo</td>
<td>0% vs 3.8% RR: 0.08 (95%CI, 0.00 to 1.42) NS</td>
<td>☒ ☒ ☒ ☒ MODERATE Study quality: 1 Incomplete outcome data Consistency: NA Directness: OK Imprecision: OK</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>311 (1 study)</td>
<td>Until 1 week after chemo</td>
<td>0.7% vs 1.3% RR: 0.52 (95%CI, 0.05 to 5.71) NS</td>
<td>☒ ☒ ☒ LOW Study quality: 1 Incomplete outcome data Consistency: NA Directness: OK Imprecision: 1 Wide CI</td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Dans cette étude, les patientes présentant un cancer du sein métastatique de stade IV ayant reçu une chimiothérapie de première ou de seconde ligne pendant quatre semaines ou moins ont été traitées par warfarine (INR 1,3-1,9) ou par un placebo correspondant. Aucune donnée de mortalité n’a été rapportée.

Aucun effet statistiquement significatif n’a été observé sur la TEV symptomatique.
GRADE: MODERATE quality of evidence

Aucun effet statistiquement significatif n’a été observé sur l’EP symptomatique.
GRADE: LOW quality of evidence

Aucun effet statistiquement significatif n’a été observé sur la TVP symptomatique.
GRADE: MODERATE quality of evidence

Aucun effet statistiquement significatif n’a été observé sur les saignements majeurs.
GRADE: LOW quality of evidence
10.2 Traitement pharmacologique versus traitement pharmacologique pour la thromboprophylaxie chez les patients cancéreux

10.2.1 HBPM versus antagonistes de la vitamine K chez les patients cancéreux recevant une chimiothérapie

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Results*</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic VTE</td>
<td>667 (1 study)</td>
<td>2.7% vs 8.2%</td>
<td>RR: 0.33 (95%CI, 0.14 to 0.83) SS in favour of LMWH</td>
</tr>
<tr>
<td></td>
<td>Follow up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic PE</td>
<td>667 (1 study)</td>
<td>0% vs 1.8%</td>
<td>RR: 0.11 (95% CI: 0.01 to 2.06) NS</td>
</tr>
<tr>
<td></td>
<td>Follow up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>667 (1 study)</td>
<td>2.7% vs 6.4%</td>
<td>RR: 0.43 (95% CI: 0.17 to 1.10) NS</td>
</tr>
<tr>
<td></td>
<td>Follow up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>667 (1 study)</td>
<td>0% vs 0%</td>
<td>RR 0 NS</td>
</tr>
<tr>
<td></td>
<td>Follow up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For information on how to interpret the outcome measures of the meta-analysis, see 1.6

Une revue systématique Cochrane (Dinisio 2012) a identifié un RCT (Palumbo 2011) comparant une héparine de bas poids moléculaire à un antagoniste de la vitamine K chez des patients cancéreux recevant une chimiothérapie. Dans cette étude, les patients atteints d'un myélome multiple et recevant des schémas à base de thalidomide ont été traités par de l'énoxaparine 40 mg ou par une faible dose de warfarine (1,25 mg/j).

Par rapport à la faible dose de warfarine, l'énoxaparine était significativement supérieure pour la prévention de la TEV symptomatique.

GRADE: LOW quality of evidence

Par rapport à la faible dose de warfarine, l'énoxaparine n'était pas significativement différente dans la prévention de l'EP symptomatique ou de la TVP symptomatique.

GRADE: LOW quality of evidence
Le risque de saignements majeurs sous énoxaparine ne différerait pas significativement de celui observé avec la warfarine faiblement dosée.

GRADE: LOW quality of evidence
10.2.2 HBPM versus aspirine à faible dose chez les patients cancéreux recevant une chimiothérapie

Enoxaparin 40mg vs aspirin 100mg for thromboprophylaxis in patients with cancer receiving chemotherapy

Bibliography: systematic review Dinisio 2012(212) included 1 RCT: Palumbo 2011(213); 1 more recent RCT: Larocca 2012(214)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
</table>
| **Symptomatic VTE** | 667 | 8 cycles of chemo | Dinisio 2012 Enoxaparin vs ASA | RR: 0.50 (95%CI, 0.19-1.31) NS | ⊕⊕⊕⊝ ⊙LOW
Study quality: -2 Open label, incomplete outcome data.
Consistency:NA
Directness:OK
Imprecision:OK |
| **Symptomatic DVT** | 342 | 6 mo | Larocca 2012: ASA vs enoxaparin | ASA: 1.14%
Enoxaparin: 1.20%
ARD: -0.07 (95% CI -0.35 to 2.21) NS | ⊕⊕⊕⊝ ⊙MODERATE
Study quality: -1 Open label
Consistency:NA
Directness:OK
Imprecision:OK |
| **Symptomatic PE** | 342 | 6 mo | Larocca 2012: ASA vs enoxaparin | ASA: 1.70%
Enoxaparin: 0%
Absolute difference: 1.70 (95% CI -0.21 to 3.62) NS | ⊕⊕⊕⊝ ⊙MODERATE
Study quality: -1 Open label
Consistency:NA
Directness:OK
Imprecision:OK |
| **Major Bleeding** | 342 | 6 mo | Larocca 2012: ASA vs enoxaparin | ASA: 0
Enoxaparin: 0
NT | Not applicable |
| **Composite of symptomatic deep vein thrombosis, pulmonary embolism, arterial thrombosis, acute cardiovascular event (acute myocardial infarction or stroke), or sudden otherwise unexplained death (PO)** | 342 | 6 mo | Larocca 2012: ASA vs enoxaparin | ASA: 2.27%
Enoxaparin: 1.20%
Absolute difference: 1.07% (95% CI -1.69 to 3.83); NS | ⊕⊕⊕⊝ ⊙MODERATE
Study quality: -1 Open label
Consistency:NA
Directness:OK
Imprecision:OK |

Deux études ont comparé l’énoxaparine (une héparine de bas poids moléculaire) à l’acide acétylsalicylique chez des patients cancéreux recevant une chimiothérapie. Dans ces deux études, les patients avaient reçu un diagnostic de myélome multiple et étaient traités/ avaient été traités par des schémas à base de thalidomide.

Aucune différence statistiquement significative n’a été observée entre les HBPM et l’AAS pour le critère d’évaluation TEV symptomatique.
GRADE: LOW quality of evidence

Aucune différence statistiquement significative n’a été observée entre les HBPM et l’AAS pour les critères d'évaluation EP symptomatique et TVP symptomatique.

GRADE: MODERATE quality of evidence

Aucune différence statistiquement significative n’a été observée entre les HBPM et l’AAS pour le critère composite associant la thrombose veineuse profonde symptomatique, l'embolie pulmonaire, la thrombose artérielle, les événements cardiovasculaires aigus (infarctus du myocarde aigu ou accident vasculaire cérébral) et les morts subites non expliquées par d'autres facteurs.

GRADE: MODERATE quality of evidence

Dans les deux groupes de traitement, aucun patient n’a présenté de saignements majeurs.
GRADE: Sans objet.
10.2.3 Antagonistes de la vitamine K versus aspirine à faible dose chez les patients cancéreux recevant une chimiothérapie

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>N° of participants (studies)</th>
<th>Follow up</th>
<th>Results</th>
<th>Quality of the evidence (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic VTE</td>
<td>667</td>
<td>8 cycles of chemo</td>
<td>8.2% vs 5.5% RR: 1.50 (95%CI: 0.74 to 3.04) NS</td>
<td>⊕⊕⊕⊝⊝ LOW Study quality:-2 Open label, incomplete outcome data Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Symptomatic DVT</td>
<td>n=667</td>
<td>8 cycles of chemo</td>
<td>6.4% vs 3.6% RR: 1.75 (95% CI: 0.75 to 4.09) NS</td>
<td>⊕⊕⊕⊝⊝ LOW Study quality:-2 Open label, incomplete outcome data Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Symptomatic PE</td>
<td>n= 667</td>
<td>8 cycles of chemo</td>
<td>1.8% vs 1.8% RR: 1.00 (95% CI: 0.25 to 3.95) NS</td>
<td>⊕⊕⊕⊝⊝ LOW Study quality:-2 Open label, incomplete outcome data Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>n= 667</td>
<td>8 cycles of chemo</td>
<td>0 % vs 1.4% RR: 0.14 (95% CI: 0.01 to 2.75) NS</td>
<td>⊕⊕⊕⊝⊝ LOW Study quality:-2 Open label, incomplete outcome data Consistency:NA Directness:OK Imprecision:OK</td>
</tr>
</tbody>
</table>

Une revue systématique Cochrane (Dinisio 2012) a identifié un RCT (Palumbo 2011) comparant des antagonistes de la vitamine K à une faible dose d’aspirine chez des patients cancéreux recevant une chimiothérapie. Dans cette étude, les patients présentant un myélome multiple et recevant des schémas à base de thalidomide ont été traités par une faible dose de warfarine (1,25 mg/j) ou d’acide acétylsalicylique (100 mg).

Aucune différence statistiquement significative n’a été observée entre l’aspirine et la warfarine pour la prévention de la TEV symptomatique, ni dans la TVP symptomatique ou l’EP.
GRADE: LOW quality of evidence

Aucun cas de saignement majeur n’a été rapporté dans le groupe sous warfarine contre 3 cas dans le groupe sous aspirine. Toutefois, cette différence n’est pas statistiquement significative.
GRADE: LOW quality of evidence
11 Effets indésirables
11.1 Héparines

11.1.1 Héparines non fractionnées

- Hémorragie (la protamine, à la dose de 1.000 UI par voie intraveineuse pour 1.000 UI d’héparine - à répéter si nécessaire - neutralise l’effet de l’héparine).
- Tous les agents antithrombotiques sont associés à un risque de complications hémorragiques. L’association de plusieurs antithrombotiques ou l’association d’antithrombotiques avec d’autres médicaments susceptibles de provoquer des hémorragies, tels que les AINS et les ISRS, augmente ce risque.
- Thrombocytopénie, également dans les semaines suivant l’arrêt de l’administration.
- Hyperkaliémie (en raison de l’effet anti-aldostérone)
- Réactions allergiques.
- Ostéoporose en cas d’utilisation prolongée.
- Les héparines sont exemptes de risque pendant la grossesse et la période d’allaitement. Dans la mesure du possible, le traitement par héparine sera interrompu peu de temps avant l’accouchement.

Centre Belge d’Information Pharmacothérapeutique

11.1.2 Héparines de bas poids moléculaire

- Hémorragie :
- Thrombocytopénie, mais risque moins élevé qu’avec les héparines non fractionnées.
- Hyperkaliémie (en raison de l’effet anti-aldostérone)
- Réactions allergiques.
- Ostéoporose en cas d’utilisation prolongée.
- Les héparines de bas poids moléculaire sont considérées comme sûres pendant la grossesse et la période d’allaitement. Dans la mesure du possible, le traitement sera arrêté peu de temps avant l’accouchement.

Centre Belge d’Information Pharmacothérapeutique

11.1.3 Héparinoïdes de bas poids moléculaire

- Hémorragie :
- Thrombocytopénie (rare).
- Élévation des enzymes hépatiques.
- Éruptions cutanées.
- Diminution de la dose en cas d’insuffisance rénale.

Centre Belge d’Information Pharmacothérapeutique
11.2 Antagonistes de la vitamine K

- L’hémorragie est le principal effet indésirable des antagonistes de la vitamine K. La relation entre la dose du traitement anticoagulant et le risque hémorragique est très étroite. Des études randomisées indiquent que la balance bénéfices/risques est la meilleure avec un INR compris entre 2 et 3.
- Les réactions allergiques sont très rares. Par ailleurs, une diminution de la réaction aux tests cutanés a été observée lors de traitements par antagonistes de la vitamine K.
- Une uricosurie a été signalée avec le dicoumarol.
- Exceptionnellement (chez 0,01 à 0,1 % des patients), une nécrose cutanée peut survenir suite à l’utilisation d’antagonistes de la vitamine K. Cette complication est toutefois associée à une morbidité élevée : même en cas de traitement adéquat, la moitié de ces patients doit subir une opération nécessitant parfois une greffe cutanée. Il est possible de prévenir l’apparition de la nécrose cutanée induite par la coumarine en augmentant prudemment la dose, en particulier chez les personnes âgées.
- Les antagonistes de la vitamine K ont un effet vasodilatateur sur les artères coronaires et les veines et capillaires périphériques, ce qui se traduit par des orteils d’aspect violacé. La vasodilatation périphérique peut également être à l’origine de la sensation de froid ressentie par certains patients.
- Seuls quelques cas d’atteinte hépatique ont été signalés. Celle-ci se présente généralement sous forme de symptômes cholestatiques apparaissant environ dix jours après le début du traitement par antagonistes de la vitamine K.
- L’administration d’un traitement antithrombotique pendant la grossesse est associée à un risque élevé avéré, tant pour la mère que pour l’enfant. Les femmes enceintes ont un risque accru de fausses-couches et de saignements périnataux. Les antagonistes de la vitamine K sont en outre tératogènes. Ils sont également sécrétés dans le lait maternel, mais cela n’aurait aucun effet sur le bébé. Toutefois, chez les bébés allaités par des mères traitées par antagonistes de la vitamine K, certains experts conseillent de mesurer régulièrement le temps de prothrombine et d’administrer éventuellement aux bébés 1 mg de vitamine K par voie orale chaque semaine.

Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions (Fifteenth Edition), 2006, Pages 983-1000
11.3 Inhibiteurs de la thrombine

11.3.1 Dabigatran

- L'effet indésirable le plus fréquent du dabigatran est le saignement. Des saignements sont survenus au total chez environ 14 % des patients. La fréquence des saignements sévères (y compris saignements de plaies) s'élevait à moins de 2 %. Epistaxis et saignements gastro-intestinaux sont survenus fréquemment, chez 1 à 10 patients traités sur 100. Ces saignements peuvent induire une anémie et une diminution de la quantité d'hémoglobine.
- Douleurs abdominales, diarrhées et nausées ont également été fréquemment mentionnées.
- L'Agence européenne des médicaments (EMA) recommande d'une part de mesurer la fonction rénale avant d'instaurer un traitement par dabigatran, et d'autre part de procéder à un contrôle annuel en cas de traitement prolongé si la fonction rénale présente une diminution légère à modérée ou si le patient est âgé de plus de 75 ans. Le dabigatran est contre-indiqué en cas d'insuffisance rénale sévère (clairance de la créatinine <30ml/min).
- Le dabigatran ne doit pas être utilisé chez les patients qui présentent un saignement en cours ou souffrent d'une maladie entraînant un risque de saignement sévère. Ce médicament ne doit pas être utilisé en association avec d'autres anticoagulants (sauf en cas de relais).
- Le dabigatran ne sera pas non plus utilisé chez les patients ayant de graves problèmes de foie ou chez les patients qui prennent par voie orale ou en injection les antifongiques kétocoazol et itraconazole, les immunosuppresseurs ciclosporine et tacrolimus ou la dronédarone.
- L'utilisation du dabigatran chez les enfants de moins de 18 ans n'est pas recommandée en raison du manque de données de sécurité et d'efficacité.
- Il n'existe pas de données suffisantes concernant l'utilisation du dabigatran chez la femme enceinte ; de même, il n'existe pas de données cliniques concernant l'effet du dabigatran sur les nourrissons allaités.
- Il n'existe aucun antidote, ce qui constitue un inconvénient en cas de saignement sévère. En outre, aucun test de laboratoire n'est disponible à ce jour pour contrôler l'effet anticoagulant du dabigatran.

- Centre Belge d'Information Pharmacothérapeutique

11.4 Inhibiteurs du facteur Xa

11.4.1 Fondaparinux

- Comme avec d'autres anticoagulants, l'effet indésirable le plus fréquent est le saignement.
- D'autres effets indésirables incluent la thrombocytopénie (rare) et l'anémie.
- Élévation des enzymes hépatiques (surtout avec l'apixaban et le rivaroxaban, dans une moindre mesure avec le fondaparinux).
- On ignore si le fondaparinux exerce un effet délétère éventuel pendant la grossesse ; dès lors, une extrême prudence est de rigueur.
- Le fondaparinux ne doit pas être prescrit aux patients qui présentent éventuellement déjà un saignement, qui ont une endocardite bactérienne aiguë ou qui souffrent d'une affection rénale sévère.
- Il n'existe aucun antidote, ce qui constitue un inconvénient en cas de saignement sévère. En cas de saignement sévère, l'administration de plasma frais ou de concentrés de facteurs de coagulation peut s'avérer nécessaire.

- **Centre Belge d'Information Pharmacothérapeutique**
- **Agence européenne des médicaments. Consulté le 18 avril 2013**

11.4.2 Apixaban

- Comme avec tous les anticoagulants, le risque de saignements est également accru avec l'apixaban ; ce médicament ne pourra être administré qu'après avoir obtenu une hémostase. Les saignements, l'anémie et les ecchymoses représentent 1 à 10 % de tous les effets indésirables connus. Les saignements gastro-intestinaux sont moins fréquents (1-0,1 %)
- La prudence est de rigueur lorsque l'apixaban est utilisé en association avec l'aspirine en raison du risque hémorragique accru.
- L'utilisation de l'apixaban est déconseillée chez les patients présentant une insuffisance rénale sévère associée à une clairance de la créatinine <15ml/min ou chez les patients dialysés.
- L'apixaban est un substrat du CYP3A4 et de la glycoprotéine P, avec possibilité d'interactions avec d'autres médicaments.
- L'expérience clinique concernant l'utilisation de l'apixaban chez les personnes âgées est limitée ; toutefois, selon le fabricant, ce médicament peut être administré aux patients de plus de 65 ans. L'utilisation de l'apixaban n'est pas limitée lorsque le poids corporel se situe en dehors des valeurs usuelles (<50 kg ou >120 kg).
- L'apixaban est contre-indiqué chez les patients présentant des affections hépatiques associées à des troubles de la coagulation et à un risque hémorragique cliniquement
significatif. Aucune adaptation posologique ne s'impose chez les patients présentant des troubles légers à modérés de la fonction hépatique.

- Il n'existe pas de données concernant l'utilisation pédiatrique de l'apixaban ; l'administration de ce médicament est donc déconseillée chez les enfants de moins de 18 ans.
- L'utilisation de l'apixaban n'est pas recommandée pendant la grossesse ou l'allaitement, car on ignore son effet dans ces situations particulières.

- Centre Belge d'Information Pharmacothérapeutique. Consulté le 22 avril 2013

11.4.3 Rivaroxaban

- L'effet indésirable le plus fréquent du rivaroxaban est le saignement, éventuellement postopératoire, induisant parfois une anémie et une thrombocytopénie. Ces saignements prennent la forme d'épistaxis, de saignements gastro-intestinaux et urologiques et d'hématomes.
- Des tests hépatiques doivent être effectués à intervalles réguliers chez les patients sous traitement par rivaroxaban. Il existe en effet un risque d'élévation des cGT et des transaminases, ainsi que de la LDH et des phosphatases alcalines. Une augmentation de la bilirubinémie est parfois signalée, et une augmentation de la bilirubine conjuguée est rapportée dans de rares cas.
- Des nausées, de la fièvre et un œdème périphérique surviennent chez 1 à 10 % des patients sous rivaroxaban.
- Les effets indésirables moins fréquemment observés lors de l'utilisation du rivaroxaban sont les suivants : étourdissements, maux de tête, tachycardie, hypotension, constipation, diarrhée, douleurs abdominales, dyspepsie, vomissements, sécheresse de la bouche, diminution générale de la force et de l'énergie, douleur dans les membres, augmentation de l'amylase/la lipase et du liquide d'exsudation de la plaie.
- Exceptionnellement, le rivaroxaban peut provoquer une syncope. Les cas de dermatite ou d'urticaire sont également rares.
- L'utilisation du rivaroxaban est contre-indiquée chez les femmes enceintes ou qui allaitent.
- L'Agence européenne des médicaments (EMA) mentionne d'autres contre-indications, à savoir : saignements évolutifs ou affections hépatiques associées à un risque accru de saignements. L'utilisation du Rivaroxaban sera de préférence évitée en cas d'insuffisance rénale sévère (clairance de la créatinine <30ml/min) ; si la clairance de la créatinine est <50 ml/min, il est recommandé d'adapter la dose.
- Le rivaroxaban est un substrat du CYP3A4 et de la glycoprotéine P, avec possibilité d'interactions avec d'autres médicaments.
- Il n'existe aucun antidote, ce qui constitue un inconvénient en cas de saignement sévère.

- Centre Belge d'Information Pharmacothérapeutique.
12 Annexe 1. Réflexions critiques – contexte historique (Fr)
(By Alain Van Meerhaeghe, pour le comité de lecture)

12.1 Traitement de la thromboembolie veineuse - Etudes versus placébo
En 1960, Barrit et Jordan(217) publie dans le Lancet le seul essai randomisé à ce jour comparant l’héparine non fractionnée relayée par un anti vitamine K à l’abstention thérapeutique. Cet essai qui est considéré comme l’essai fondateur justifiant le traitement anticoagulant n’a pas été retenu par la Cochrane collaboration dans sa revue systématique(218).

En effet un des problèmes est que le diagnostic d’embolie pulmonaire a été posé cliniquement (pas de scintigraphie à l’époque) et nous savons que le diagnostic clinique n’est pas adéquat. Dans certaines séries publiées 75% des patients avec un diagnostic clinique d’embolie pulmonaire n’en souffraient pas, d’où les efforts considérables des scores cliniques (Wells-Genève..) pour créer une probabilité à priori avant de faire une recherche diagnostique.

Un audit autopsique réalisé sur les patients décédés dans cette étude est repris dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age, yr/sex</th>
<th>Underlying Diagnosis</th>
<th>Anatomic Site of Pulmonary Emboli</th>
<th>Source of Thromboemboli</th>
<th>Coincidental Infection Noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54/female</td>
<td>Extensive breast carcinoma</td>
<td>Left main branch</td>
<td>Right femoral DVT</td>
<td>Mixed organism empyema, bronchopneumonia and abscess</td>
</tr>
<tr>
<td>2</td>
<td>56/male</td>
<td>Post operation for intestinal obstruction (adhesions)</td>
<td>Main trunk</td>
<td>Left femoral DVT, hepatic vein thrombosis</td>
<td>Biliary tree sepsis</td>
</tr>
<tr>
<td>3</td>
<td>78/female</td>
<td>Post fractured ankle</td>
<td>Main trunk</td>
<td>Bilateral popliteal DVT</td>
<td>Bronchopneumonia, fungal lung abscess</td>
</tr>
<tr>
<td>4</td>
<td>57/male</td>
<td>Myocardial infarction</td>
<td>Left lobar</td>
<td>Bilateral femoral DVT, right ventricular mural thrombus</td>
<td>Staphylococcus aureus lung abscess</td>
</tr>
<tr>
<td>5</td>
<td>41/male</td>
<td>Nephrotic syndrome secondary to primary amyloidosis</td>
<td>Both main branches</td>
<td>Left calf DVT, renal vein thrombosis</td>
<td>None</td>
</tr>
</tbody>
</table>

On peut en retirer notamment les observations suivantes :
1-les co-morbidités étaient extrêmement lourdes et ont pu dans certains cas être la cause de la mort sauf dans l’observation 5.

2- Des thrombus ont été retrouvés au niveau des artères pulmonaires et du réseau périphérique.

3- Ce tableau est consistant avec l’observation qu’environ 95% des patients décédés des suites d’une embolie pulmonaire souffrent de pathologies sévères (chroniques ou aigues).

Egermayer 1981(219) cite d’autres problèmes avec cet essai clinique réalisé fin des années 50.

1- Des médecins autres que les investigateurs ont référés leurs patients pour l’inclusion dans l’étude. Donc problème de sélection non aléatoire.

2- Pas double-blind

3- Aucune information fournie par les investigateurs sur la comparabilité des deux bras de l’essai

4- Pas de données sur des événements non mortels qui seraient éventuellement survenus.

Malgré le rejet par Cochrane et d’autres (à cause des biais potentiels), j’ai réalisé un test exact de Fisher en vue d’estimer la taille de l’effet chez ces patients sévèrement malades,

Data analyzed

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Alive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hep+</td>
<td>0</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>(0%)</td>
<td>(46%)</td>
<td>(46%)</td>
<td>(46%)</td>
</tr>
<tr>
<td>Hep-</td>
<td>5</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>(14%)</td>
<td>(40%)</td>
<td>(54%)</td>
<td>(54%)</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>

P= 0.0493. J’obtiens un NNT de 4 (95%CI 2-47)

La recherche d’autres essais cliniques semble n’apporter que les résultats suivants que je recopie ci-dessous :

Published, randomized trials of DVT patients, including un-anticoagulated controls, include:

- An abstract-only report by Kakkar and colleagues(220) compared heparin, Malayan pit viper venom (*Arvin*), streptokinase, and placebo, resulting in 2 of 7 deaths in the heparin group and 0 of 6 in the placebo group.

- Ott and colleagues(221) published a placebo-controlled trial in which 2 of 11 patients died receiving heparin and warfarin, and 1 of the 12 placebo-treated patients died.

- Nielsen and colleagues(222, 223) randomized 90 ambulatory patients with DVT into standard heparin and phenprocoumon vs phenylbutazone (ie, no anticoagulants). Two of 48 patients in the anticoagulated group died (one of PE), whereas 0 of 42 in the un-anticoagulated group died. About 50% of both groups had PE by lung ventilation-perfusion scanning, mostly asymptomatic.
12.2 Etudes de non-inferiorité

L’essai le plus souvent repris pour déterminer la marge de non infériorité est celui publié en 1992 dans le NEJM par Brandjes et al(224) et qui compare l’acénocoumarol seul versus héparine +acénocoumarol.

Cet essai a été exclu par les membres de la Cochrane(218) car il n’y avait pas de groupe contrôle par placebo or NSAID.

Les auteurs publiant les essais sur les LMWH ont quasi tous utilisé l’essai de Brandjes et al(224) comme base pour définir leur marge de non infériorité (étape critique !).

D’abord, ils ont assimilé le bras acénocoumarol (Sintrom) à un placébo. Probablement en raison du temps de latence de l’action anticoagulante des antivitamines K.

Examinons un instant l’essai de Brandjes et al(224) qui sert de support aux essais ayant permis l’introduction des LMWH.

Cet essai a été arrêté précocement et n’a donc recruté que 120 patients (60 dans chaque bras). Le bras acénocoumarol avait au moment de l’arrêt jugé nécessaire par le safety committee, 12 events (20%) (symptomatic extension of venous thrombosis, symptomatic pulmonary embolism or symptomatic recurrence of venous thrombosis). Le bras Héparine +Sintrom avait 4 events (6.7%).

Cependant comme l’écrivent les auteurs la différence n’était pas statistiquement significative (p = 0.058). L’ARR était de 13.3% ou 0.13. Les calculs que j’ai faits pour calculer l’IC 95%(0.009 – 0.26). Donc l’IC couvre une zone allant de moins de 1% à 26%.

Comme le signale Pérard et al.(225), les auteurs ont basé la marge de non infériorité sur la valeur centrale de l’intervalle de confiance, ainsi dans l’essai Columbus(226).

Les auteurs écrivent :On the basis of the previously observed absolute risk reduction of 12 percentage points (13.3%??) associated with the use of unfractionated heparin as compared with placebo (donc acenocoumarol = placebo) (ref 14 dans leur article= Brandjes), we took an increase of 3 percentage points as the threshold value indicating clinical equivalence.

Ils font donc l’hypothèse que la vraie valeur inconnue de la taille de l’effet (ARR) de l’héparine + acénocoumarol vs acénocoumarol seul est de 12 %

Imaginons comme le laisse supposer les valeurs reprises dans l’IC à 95% qui ont toutes le même poids dans l’appréciation par la statistique inférentielle de la vraie taille de l’effet que celle-ci soit la valeur de la borne inférieure c’est-à-dire plus ou moins 1% alors retirer3 % c’est prendre le risque d’être moins efficace que l’acénocoumarol seul considéré comme placébo !

C’est ce qu’explique Pérard et al(225). La FDA n’avait pas encore écrit ses recommandations à l’usage de l’industrie pour essayer de minimiser les faiblesses inhérentes des conclusions que l’on peut tirer à partir des essais de non infériorité.

Continuons dans la construction du savoir dans le traitement de la maladie veineuse thrombo-embolique.

Les Nouveaux anticoagulants oraux en plus de faiblesses de certains essais (LMWH au début du traitement avant randomisation, open label, patients soigneusement sélectionner pour éviter les
effets secondaires...) sont comparés avec l'aide d’essais de non infériorité aux LMWH avec des marges de non–infériorité parfois importantes.

Voici un tableau récapitulatif des études de non-infériorité dans le domaine cardiovasculaire provenant de Head et al.(227). Seule la partie de droite concerne les anticoagulants oraux. Pour la maladie veineuse Thromboembolique c’est du même niveau.
<table>
<thead>
<tr>
<th>Trial, year</th>
<th>Device vs. surgery trials</th>
<th>Pharmacologic trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SYNTAX, 2009</td>
<td>PROTECT AF, 2009</td>
</tr>
<tr>
<td>New Rx</td>
<td>TAXUS DES</td>
<td>Dabigatran 150 mg</td>
</tr>
<tr>
<td>Standard Rx</td>
<td>CABG</td>
<td>Dabigatran 110 mg</td>
</tr>
<tr>
<td>Primary endpoint</td>
<td>CABG</td>
<td>Rivaroxaban</td>
</tr>
<tr>
<td>Standard Rx</td>
<td>MACCE</td>
<td>Apixaban</td>
</tr>
<tr>
<td>Standard Rx</td>
<td>event rate (expected)</td>
<td></td>
</tr>
<tr>
<td>Standard Rx</td>
<td>event rate (observed)</td>
<td></td>
</tr>
<tr>
<td>Trial power</td>
<td>96%</td>
<td>2.3% per 100 patient-years</td>
</tr>
<tr>
<td>Alpha</td>
<td>One-sided, 0.05</td>
<td>Warfarin</td>
</tr>
<tr>
<td>Sample size</td>
<td>1800</td>
<td>Stroke or systemic embolism</td>
</tr>
<tr>
<td>Follow-up duration</td>
<td>1 year</td>
<td>2.2% per 100 patient-years</td>
</tr>
<tr>
<td>Standard Rx effect</td>
<td>Not quantified</td>
<td>Warfarin</td>
</tr>
<tr>
<td>Non-inferiority margin</td>
<td>ARD = 6.6%</td>
<td>Stroke or systemic embolism</td>
</tr>
<tr>
<td>% preservation of standard Rx effect</td>
<td>RR = 1.51</td>
<td>Stroke or systemic embolism</td>
</tr>
<tr>
<td>New Rx vs. standard Rx</td>
<td>ARD = 5.5%</td>
<td>Stroke or systemic embolism</td>
</tr>
<tr>
<td>Non-inferiority met</td>
<td>No</td>
<td>Stroke or systemic embolism</td>
</tr>
<tr>
<td>Ancillary advantage</td>
<td>Less invasive, lower stroke</td>
<td>Stroke or systemic embolism</td>
</tr>
</tbody>
</table>

DEs, drug-eluting stent; CABG, coronary artery bypass grafting; TAVR, transcatheter aortic valve replacement; MV, mitral valve; LAA, left atrial appendage; MACCE, major adverse cardiac or cerebrovascular events; ARD, absolute risk difference; RR, relative risk; PP, per-protocol; ITT, intention-to-treat; MR, mitral regurgitation; Rx, treatment.

*Estimations based on the rates provided in the papers.
Bien entendu, il peut paraître incongru d’aller contre les forces issues de beaucoup d’essais randomisés. Je ne prétends nullement dire que les traitements ne sont pas efficaces, je prétends que nous n’avons pas à cause de toute cette construction du savoir commençant avec Baritt et Jordan (217) une idée précise de la taille de l’effet des traitements. Comme clinicien nous sommes incapables de déterminer avec certitude le nombre de patients à traiter pour éviter à l’un d’eux un adverse event.

12.3 Le diagnostic moderne des embolies pulmonaires
Reprenons l’essai fondateur de Baritt et Jordan (217), les patients ont été diagnostiqués sur base clinique, étaient hypotendus, présentaient une décompensation cardiaque droite aigue et des hémoptysies, avec en plus selon les autopsies des 5 patients décédés sur les 35 enrôlés, des pathologies d’accompagnement ou préexistantes gravissimes.

Qu’en est-il aujourd’hui en termes de types de patients?
L’étude observationnelle la plus complète a été publiée en 2008 par Kline et al (228). Armé de tout l’arsenal diagnostique moderne, parmi les 8138 patients testés pour suspicion d’embolie pulmonaire dans les services d’urgence des hôpitaux participants, 500 diagnostics ont été retenus et la mortalité par embolie pulmonaire a été de 2.6% (13/500) pour les embolies pulmonaires confirmées. Si l’on s’en tient à la suspicion clinique qui était le moyen diagnostique dans l’essai de Baritt et Jordan (217), la mortalité est de 0.2% (13/8138). Cette diminution par un facteur 100 de la mortalité par rapport à l’essai de Baritt et Jordan (217) n’est vraisemblablement pas due au traitement.

La modification du pronostic est aussi due à un autre facteur : le patient actuel.

Avec les méthodes diagnostiques modernes comme l’angioscanner, nous élargissons le diagnostic de l’embolie pulmonaire et cette partie du spectre de la maladie n’a probablement plus rien à voir avec les embolies pulmonaires fatales des patients souffrant de pathologies graves et terminales. Tout médecin dans sa formation a été impressionné par la présence de maladies veineuses thromboemboliques dans les autopsies réalisées sur des patients décédés dans le cadre de pathologies graves. Nous avons un ancrage heuristique sur cette situation clinique et nous en projetons la gravité sur tout cas d’embolie pulmonaire. Avons-nous raison ou tort de penser comme cela ?

Dans l’étude PIOPED (229) publiée en 1990, 30% des 931 avec scintigraphie V/Q venaient des services d’urgence ou d’une salle d’hospitalisation. 20 patients avec un diagnostic d’embolie pulmonaire confirmé par angiographie ont échappé au traitement. 3 mois après le diagnostic, ces patients ont été revus pour déterminer l’histoire naturelle.

Bien entendu, le petit nombre de patients ne permet pas de conclusion formelle, mais 1 patient est décédé durant cette période de suivi (5%) et 1 patient a eu une récidive d’embolie pulmonaire non fatale. Pas d’autres événements ont été rapportés durant le suivi de 4 à 12 mois. Tous les patients non traités avaient < 3 « mismatched segments ». L’angiographie montrait des thrombus au niveau segmentaire ou sous segmentaire dans 16 (84%) des patients, comparés à 36% chez les patients traités.
Il y a ici une indication empirique (de valeur faible bien entendu = petite série de cas) que : "Mild untreated PE carries a lower immediate mortality and lower mortality from recurrent PE than overt PE described in prior decades " comme concluent les auteurs.

Le fait probant le plus marquant est l'étude de Nielsen et al(222) comprenant 90 patients relativement en bonne santé diagnostiqués au niveau d'institutions de soins de première ligne avec une phlébographie et embolie pulmonaire asymptomatique diagnostiquée par scintigraphie de V/Q. Ces embolies pulmonaires asymptomatiques étaient présente chez 50% des patients enrôlés. 48 ont reçu un traitement classique et 42 pas d’anticoagulation. Les deux groupes étaient identiques en termes d’âge (57 ans), sexe, facteurs de risques thrombotiques (72% versus 63% dans le groupe non anti coagulé). Ici pas de différence de mortalité ou de taux de progression ou régression du thrombus entre les deux groupes. L’étude concernait des patients qui étaient ambulatoires au moment du diagnostic, hémodynamiquement stables, avec peu de comorbidités et porteurs pour la moitié d’entre eux d’une embolie pulmonaire asymptomatique.

Des études autopsiques (230),suivi de cohortes(231) et éditoriaux(232) suggèrent que chez les patients sans comorbidités importantes et hémodynamiquement stables, le bénéfice du traitement est indéfini et probablement faible, peut être nul.

Nous sommes par les qualités des démarches diagnostiques de l’embolie pulmonaire devant un élargissement du phénomène, nous diagnostiquons des embolies à valeurs pathologiques plus faibles et nous n’avons pas modifié notre approche thérapeutique. Cette position qui est de traiter des patients susceptibles de résoudre physiologiquement leur embolie pulmonaire, les met alors sous le risque des effets secondaires hémorragiques sans bénéfice en contrepartie.

De plus, la recherche diagnostique d’embolies pulmonaires asymptomatique ou peu symptomatiques chez des individus par ailleurs en bonne santé est peut-être plus dangereuse qu’utile car la spécificité de l’angioscanner n’est pas de 100% mais est comprise entre 90-94%(233) et donc génératrice de faux positifs qui eux aussi seront exposés aux traitements.

Il faut ajouter à cela les risques de cancérisation induits par les irradiations par angioscanner.

Seul un essai randomisé pourrait apporter la réponse, il me semble cependant que cela ne se fera jamais (ethique).

Note :
Pour plus d’informations sur le calcul des marges de non-infériorité et sur leur application dans les études concernant le traitement de la TEV, voir la référence suivante: (234)

Pour plus d’informations sur les marges de non-infériorité dans les études concernant la prévention de la TEV, voir la référence suivante: (3)
Références

Références

Références

Références

Références

